เด็กหญิงจิรตินันท์ ทองก้อน โรงเรียนเมืองเชลียง
วันพุธที่ 21 กรกฎาคม พ.ศ. 2553
เมล็ดและการงอกของเมล็ด( Seed and germination) ในพืชมีดอกหลังจากการปฏิสนธิแล้วออวูลจะเจริญเป็นเมล็ด ภายในเมล็ด จะมีเอ็มบริโอ ประกอบด้วยต้นพืชที่เกิดใหม่และแหล่งเก้บอาหาร รังไข่จะ เจริญเป็นผลซึ่งภายในมีเมล็ด อาจจะมีเมล็ดเดียวหรืหลายเมล็ด Dehiscent: การกระจายของเมล็ด การกระจายของเมล็ดขึ้นอยู่กับ ชนิดของผลคือ ผลที่แตกได้และผลที่แตกไม่ได้ Dehiscent: ผลที่แตกได้ หมายถึงผลที่มีหลายเมล็ด เมื่อผลแก่เต็มที่ เมล็ดจะกระจายออกจากผลก่อนที่ผลจะแตกออกเช่น ผลที่เป็นฝักและแคปซูล การกระจายของเมล็ดอาศัยลม น้ำและสิ่งต่างๆ Indehiscent: ผลที่แตกไม่ได้ผลพวกนี้จะมีส่วนของผลช่วยในการ กระจายผลของเมล็ด เช่น มีลักษณะคล้ายร่มชูชีพ เช่น ผลยาง ลมจะช่วยพัด พาไปบางชนิดส่วนของพืชมีลักษณะตะขอเกาะติดไปกับขนสัตว์ ทำให้เมล็ด ปลิวไปตกตามที่ต่างๆหรือเมื่อสัตว์กินผลไม้ทำให้เมล็ดตกอยู่ที่พื้นดิน Germination การงอของเมล็ด การงอกของเมล็ดจะเกิดขึ้นเมื่อสภาวะ แวดล้อมเหมาะสมยอดอ่อนและรากอ่อนเจริญออกจากเปลือกหุ้มเมล็ดเจริญ เป็น ต้นใหม่หรือต้นกล้า Hypogeal:ไฮโปเจียลเป็นลักษณะการงอกของพืชพวกถั่วขณะงอกใหม่ ใบเลี้ยงจะอยู่ใต้ดิน ส่วนยอดอ่อนจะงอกขึ้นมาเหนือพื้นดิน Epigeal: เอพิเจียลเป็นลักษณะการงอกของเมล็ดที่ใบเลี้ยงจะอยู่เหนือ พื้นดิน อยู่ใต้ใบแท้ใบแรก เช่น ต้นมะเขือเศ ซึ่งเ็นพืชใบเลี้ยงคู่ Coleoptile: โครีออพไทล์ คือใบแรกของพืชใบเลี้ยงเดี่ยว ทำหน้าที่ ป้องกันตาและใบแรกที่เกิดจากตา
ชนิดของดอกไม้( Types and arrangements of flowers) Inflorescence: ดอกช่อ ดอกหลายดอกเจริญออกจากจุกเดียวกัน Flowerhead หรือ compositeflower: ดอกรวม ประกอบด้วย ดอกย่อยจำนวนมาก Disc flowets: ดิสค์ฟลอเรท ดอกย่อยแต่ละดอกมีกลีบดอก ขนาดเท่ากันทั้งหมด Ray florets:เรย์ฟลอเรทดอกย่อยแต่ละดอกมีกลีบยาวเพียงกลีบเดียว Umbellifer ดอกแบบอัมเบล เป็นดอกช่อที่มีรูปทรงของช่อดอกคล้วยร่ม Bell flower: ดอกรูประฆัง ดอกที่มีกลีบดอก้เชื่อมติดกันมีรูปทรง แบบระฆัง Spurred flower: สเปอร์ฺฟลาวเวอร์ ดอกที่มีกลีบดอกกลีบเดียวหรือ หลายกลีบยาวลงมารูปร่างคล้ายเดือย Lipped flower: ลิปฟลาวเวอร์ ดอกที่มีกลีบดอกโค้งคล้ายริมฝีปาก ด้านบนและด้านล่าง Pea flower:ดอกพืชตระกูลถั่ง ดอกที่มีกลีบดอกด้านบนขนาดใหญ่ มีกลีบย่อย 2 กลีบอยู่ด้านข้าง และมีกลีบด้านล่างอีก 2 กลีบ ที่มาจดกัน มีลักษณะเป็นร่องโค้ง
การสืบพันธุ์ของพืชดอก(Reproduction in a flowering plant) การสืบพันเป็นการสร้างชีวิตใหม่ พืชดอกทุกชนิดสืบพันธุ์แบบอาศัยเพศ โดยเซลล์สืบพันธุ์เพศผู้ผสมกับเซลล์สืบพันธุ์เพศเมียในออวูล Pollen: ละอองเรณู ลักษณะเป็นเม็ดเล็กๆอยู่ในเกสรตัวผู้ ละออง เรณูแต่ละอันจะมีเซลล์พิเศษที่มีสองนิวเคลียส คือเจเนรีทีฟนิวเคลียสและทิวป์ นิวเคลียส เมื่อเรณุเข้าไปถึงรังไข่ เจเนเรทีฟนิวเคลียสจะแบ่งเป็นสอง สเปิร์มนิวเคลียส Ovules: ออวูล ลักษณะเป็นโครง สร้างเล็กๆอยู่ภายในส่วนอวัยวะสืบ พันธุ์เพศเมียของดอกคือรังไข่หลัง จากการปฏิสนธิแล้วออวูลจะเจริญ เป็นเมล็ด ซึ่ง จะมี เซลล์อยู่ภายในเนื้อเยื่อหุ้มคือ อินทีกูเมนต์เป็นถุงเอ็มบริโอ แต่ จะมีช่องเล็กๆเรียกว่ารังไข่ดอกป็อบปี Pollination:การถ่ายละออง เรณู เป็นกระบวนการที่ละอองเรณูโดย นิวเคลียสสืบพันธุ์เพศผู้ไปผสมกับ เซลล์สืบพันธุ์เพศเมียที่รังไข่ของ ดอกไม้ ละอองเรณุที่ตกบนยอดเกสร ตัวเมียจะสร้างหลอดเรณูโดยทิวป์นิว เคลียส หลอดละออง เรณูุเจริญลงไป ที่เนื้อเยื่อรังไข เข้าไปทางยังออวูล ทางไมโครไพล์ทำใหสเปิร์มนิวเคลียส ทั้งสองเคลื่อนที่ตามลงไปเพื่อผสมกับเซลล์ไข่ได้ Fertilization: การปฏิสนธิ หลังจากถ่ายละอองเรณูแล้วสเปิร์ม นิวเคลียสอันหนึ่งจะเข้าไปผสมกับเซลล์ไข่ในออวูล เป็นไซโกต ส่วนสเปิร์มนิว เคลียส อีกอันหนึ่งจะผสมกับนิวเคลียส 2 อันที่เชื่อมติดกันในถุงเอ็มบริโอได้ เซลล์ใหม่ ซึ่งเจริญ เป็นเอ็นโดสเปิร์ม Cross pollination: การถ่ายละอองเรณูข้ามต้นเป็นการถ่ายละออง เรณูจากพืชต้นหนึ่งไปยังอีกต้นหนึ่งที่ชนิดเดียวกัน ถ้าเป็นพืชต่างชนิดกันจะไม่ สร้างหลอดละอองเรณ ละอองเรณูถูกพาไปโดยลม หรือแมลงที่ไปกินน้ำหวาน ในดอกไม้ Self pollination: การถ่ายละอองเรณุภายในต้นเดียวกัน เช่น การถ่าย ละอองเรณุในดอกกล้วยไม้ชนิดหนึ่งมีกลิ่นคล้ายผึ้งตัวเมีย ทำให้ผึ้งตัวผู้ มาดูดกินน้ำ้หวานและได้ถ่ายละอองเรณูให้ดอกอื่นๆ แต่ถ้าไม่มีผึ้งมา เกสรตัวผู้ก็ จะโค้งลงมา และมีการถ่ายละอองเรณู ในดอกเดียวกันได้
ดอกไม้(Flowers) ดอกไม้คือส่วนของพืชเกี่ยวกับการสืบพันธุ์ ในพืชที่มีสองพืชในดอกเดียว กัน แต่ละดอกประกอบด้วยอวัยวะเพศผู้และเพศเมีย พวกพืชที่ดอกแยพเพศแต่ อยู่ในต้นเดียวกัน ประกอบด้วยดอกสองชนิดคือ ดอกเพศผู้ซึ่งมีเกสรตัวผู้อย่าง เดียวและดอกเพศเมียซึ่งมีเกสรตัวเมียเพียงอย่างเดียว Receptacle: ฐานรองดอก เป็นส่วนที่อยู่ตรงโคนฐานดอกที่ต่อกับก้านดอก Petals: กลีบดอก เป็นโครงสร้างที่ทำหน้าที่เกี่ยวข้องกับการสืบพันธุ์ เป็นส่วน ที่มีสีต่างๆช่วยล่อแมลง ชั้นของกลีบดอกเรียกว่าคลอรอลรา Sepals: กลบเลี้ยง รูปร่างคล้ายใบเล็กๆ อยู่รอบตาดอก เรียกชั้นนี้ว่า เคลิกซ์ พบในพืชบางชนิด Nectaries: ต่อมน้ำหวาน เป็นเซลล์สร้างน้ำหวานที่อยู่ตรงโคนกลีบดอก ที่บริเวณโคนกลีบดอกจะมีเส้นสีเข้มเป็นแนวไปยังต่อมน้ำหวานเพื่อล่อแมลงให้ มาดูดกินน้ำหวานทำให้เกิดการถ่ายระอองเรณู Stamens: เกสรตัวผู้ เป็นอวัยวะ สืบพันธุ์เพศผู้ ประกอบด้วยก้านอับ ระอองเรณู แต่ละอันจะมีถุงเรณู ในถุง เรณูมีระอองเรณู Carpel: เกสรตัวเมีย เป็นอวัยวะ สืบ พันธุ์เพศเมียประกอบด้วยรังไข่ยอด เกสรตัวเมียและก้านเกสรตัวเมีย Ovaries: รังไข่เป็นโครงสร้างหลัก ของอวัยวะสืบพันธุ์เพศเมีย ภายในโครง สร้างเล็กๆเรียกว่าออวูล ภายในออวูลมี เซลล์เพศเมีย ออวูลจะอยู่ติดกับผนังรัง ไข่ Stigma: ยอเกสรตัวเมีย เป็นส่วน บนสุดของยอดเกสรตัวเมีย ผิวบนของ ยอดเกสรตัวเมียมีน้ำเหนียวๆ เมื่อมีการ ถ่ายระอองเรณุทำให้ระอองเรณุติดได้ Style: ก้านเกสรตัวเมีย เป็นส่วน ของเกสรตัวเมียที่เชื่อมระหว่างยอด เกสรตัวเมียกับรังไข่ Gynaecium: จินนีเซียม เป็นโครงสร้างทั้งหมด ของอวัยวะสืบพันธ์ เพศเมียประกอบด้วยเกสรตัวเมีย4อันหรือมากกว่า
การสร้างอาหารของพืช(Plant food production) Photosythesis: การสังเคราะด้วยแสง เป็นกระบวนการที่มี ปฏิกิริยาทางเคมีที่เกิดต่อเนื่องเป็นลำดับในชั้นเซลล์พาลิเสดของพืช โดย คาร์บอนไดออกไซด์ ทำปฏิกิริยากับน้ำ ใช้พลังงานจากแสงอาทิตย์ที่คลอโร พลาสท์ในเซลล์พืชรับมา ผลจากการสังเคราะด้วยแสงจะได้ออกซิเจน และอาหารของพืช Compensatints: คอมเพนเซซันพอยท์ ภายใน 24 ช่วโมง พืชจะมี กระบวนการ 2 ิอย่างคือ การสังเคราะห์ด้วย แสงและการหายใจภายในเซลล์ ซึ่งสมดุลกัน กระบวนการสังเคราะห์แสงจะ สร้างคาร์โบไฮเดรต แกละมีออกซิเจน เกิดขึ้น กระบวนการหายใจจะให้ คาร์บอนไดออกไซด์และน้ำที่พืชใช้ในการ สังเคราะห์แสง Chloroplasta: คลอโรพลาส เป็นออร์แกแนลล์ในเซลล์พืชชนิดหนึ่ง คลอโรพลาสสามารถเคลื่อนที่ได้ภายใน เซลล์ตามความเข้มและทิศทางของแสง Chlorophyll: คลอโรฟิลล์ เป็น รงควัตถุที่พบในใบไม้ สามารถดูดกลืน พลังงานแสงสีน้ำเงิน สีม่วง และสีแดง
การลำเลียงน้ำและแร่ธาตูในพืช(Plant fluid transportion) Transpiration: การคายน้ำเป็นการสูญเสียน้ำโดยการกลายเป็นไอผ่าน ทางช่องเล็กๆที่เรียกว่าปากใบ ซึ่งอยู่ทางด้านล่างของใบ Transpiration stream: ทรานสปิเรชันสตรีม เป็นกระบวนการที่เกิด ขึ้น อย่างต่อเนื่องในพืช ขณะที่เซลล์ด้านนอกของใบคายน้ำความเข้มข้นของ เกลือแร่และ น้ำตาลในแวคิวโอลจะมีมากกว่าเซลล์ข้างเคียง น้ำจะผ่านออกจาก เซลล์ที่มีน้ำมาก เข้าสู่เซลล์ที่มีน้ำน้อย ด้วยกระบวนการออสโมซิส ทำให้เกิด แรงดึงดูดน้ำ เข้าสู่ไซเลมในลำต้นและราก โดยอาศัยแรงแคปิลลารีแอกชัน รากจะดึงดูดน้ำได้มาก Capillary action: แคปิลลารีแอกชัน การที่โมเลกุลของของเหลวจะถูก ขึ้นดึงสู่ลำต้นได้โดยแรงระหว่างโมเลกุล ของของเหลวกับโมเลกุลของท่อเล็กๆ ที่ีของเหลวไหลผ่าน Root pressure: แรงดันราก แรง ดันที่เกิดที่รากของพืชบางชนิดในรากของ พืชทุกชนิด น้ำจะถูกดูดจากดินทางราก ขึ้นสู่ลำต้นโดยการออสโมซิส พืช จะมี แรงดันรากซึ่งเป๋นแรงที่พอจะดันน้ำขึ้นสู่ ลำต้นทางไซเลมจากนั้นน้ำจะถูกดูดขึ้ึน ไปบนลำต้นโดยทรานสปิเรชันสตรีมใน พืชบางชนิด การลำเลียงน้ำผ่านเซลล์ ของรากสู่ลำต้นโดยทรานสปิเรชันสตรีม
การตอบสนองต่อสิ่งเร้าขงพืช(Plant sensitivity) Phototropism: การตอบสนองต่อแสง เป็นการตอบสนองของพืชต่อแสง อาืิทิตย์เรียกการตอบสนองนี้ว่าเฮริโอทรอปิซึม ใบและลำต้นพืชส่วนใหญ่เจริญ โดยการ หันแสงอาทิตย์ Haptotropism or thigmotropism: การตอบสนองต่อการสัมผัส เป็น การตอบ สนองของพืชต่อการสัมผัส เช่นการม้วนใบของต้นหยาดน้ำค้าง เพื่อจับแมลง เมื่อมีแมลงบินมาเกาะ
Hydrotopism: การตอบสนองต่อน้ำ ตัวอย่างเช่น รากพืชจะงอกออกด้านข้างถ้าบริเวณนั้นมีปริมาณน้ำมาก Geotropism:การตอบสนองต่อแรงโน้มถ่วงของโลกซึ่งส่วนใหญ่พืช จะแสดงการตอบสนองนี้ ตัวอย่างเช่นการเจริญของรากลงสู่ดิน Photoperidism:การตอบสนองของพืชต่อช่วงเวลาที่มีแสง
เป็นการตอบสนองช่วงความยาวเวลากลางวันหรือกลางคืนต่อการออกดอก ของพืช
Hydrotopism: การตอบสนองต่อน้ำ ตัวอย่างเช่น รากพืชจะงอกออกด้านข้างถ้าบริเวณนั้นมีปริมาณน้ำมาก Geotropism:การตอบสนองต่อแรงโน้มถ่วงของโลกซึ่งส่วนใหญ่พืช จะแสดงการตอบสนองนี้ ตัวอย่างเช่นการเจริญของรากลงสู่ดิน Photoperidism:การตอบสนองของพืชต่อช่วงเวลาที่มีแสง
เป็นการตอบสนองช่วงความยาวเวลากลางวันหรือกลางคืนต่อการออกดอก ของพืช
สมัครสมาชิก:
บทความ (Atom)
1/1
เด็กชาย
เกียรติพงศ์
รุ่งโรจน์
1
เด็กชาย
ไกรสร
พวงแก้ว
2
เด็กชาย
เชษฐกิติ์
ทุนมาก
3
เด็กชาย
ฐาปกรณ์
เผยพร
4
เด็กชาย
ณัฐกิตติ์
ญาณปัญญา
5
เด็กชาย
ณัฐพร
ปลื้มใจ
6
เด็กชาย
ทศพร
อุดมสิทธิพร
7
เด็กชาย
ธีรภัทร
โชติสิริกานต์
8
เด็กชาย
นัฐวุฒิ
อ่องอ้น
9
เด็กชาย
ภูวดล
เทพวรรณ
10
เด็กชาย
วสันต์
ยะอูป
11
เด็กชาย
สุรวิทย์
แสวงลาภ
12
เด็กชาย
สุรศักดิ์
สุวรรณนาค
13
เด็กชาย
อนุสรณ์
คนกล้า
14
เด็กชาย
อมรเทพ
พราหมชม
15
เด็กหญิง
กุลจิรา
บุระเนตร
16
เด็กหญิง
จิรตินันท์
ทองก้อน
17
เด็กหญิง
จุฑามาศ
กัณยาบุตร
18
เด็กหญิง
ณิชนันท์
เผยพร
19
เด็กหญิง
นวี
อยู่นาน
20
เด็กหญิง
นัจนันท์
ไพเชฐศักดิ์
21
เด็กหญิง
นิศารัตน์
จูมอญ
22
เด็กหญิง
นุจรินทร์
ประทาน
23
เด็กหญิง
พรนภา
หมีนิ่ม
24
เด็กหญิง
พฤกษา
เจาะรอด
25
เด็กหญิง
พัชรารัตน์
บัณฑูร
26
เด็กหญิง
พัชรี
นนท์คำวงค์
27
เด็กหญิง
พิชชารีย์
เอบศรี
28
เด็กหญิง
พิมพลอย
สงเคราะห์
29
เด็กหญิง
เพชรรัตน์
นนท์คำวงค์
30
เด็กหญิง
ภิญญดา
เวชประสิทธิ์
31
เด็กหญิง
รัตนาภรณ์
รุ่งโรจน์
32
เด็กหญิง
รุจิลดา
แก้วโสภา
33
เด็กหญิง
วนิสา
เจิมกลิ่น
34
เด็กหญิง
วันดี
มณีนุตร์
35
เด็กหญิง
วารุณี
เวสกุล
36
เด็กหญิง
สาวิตรี
กิ่งจำปา
37
เด็กหญิง
สุนิสา
วะจะนะ
38
เด็กหญิง
สุวนันท์
ธัญญา
39
เด็กหญิง
หทัยทัต
บัวกล้า
40
เด็กหญิง
อฐิติญา
วงษ์เรียน
41
เด็กหญิง
อสมาภรณ์
ใบศรี
42
เด็กชาย
เกียรติพงศ์
รุ่งโรจน์
1
เด็กชาย
ไกรสร
พวงแก้ว
2
เด็กชาย
เชษฐกิติ์
ทุนมาก
3
เด็กชาย
ฐาปกรณ์
เผยพร
4
เด็กชาย
ณัฐกิตติ์
ญาณปัญญา
5
เด็กชาย
ณัฐพร
ปลื้มใจ
6
เด็กชาย
ทศพร
อุดมสิทธิพร
7
เด็กชาย
ธีรภัทร
โชติสิริกานต์
8
เด็กชาย
นัฐวุฒิ
อ่องอ้น
9
เด็กชาย
ภูวดล
เทพวรรณ
10
เด็กชาย
วสันต์
ยะอูป
11
เด็กชาย
สุรวิทย์
แสวงลาภ
12
เด็กชาย
สุรศักดิ์
สุวรรณนาค
13
เด็กชาย
อนุสรณ์
คนกล้า
14
เด็กชาย
อมรเทพ
พราหมชม
15
เด็กหญิง
กุลจิรา
บุระเนตร
16
เด็กหญิง
จิรตินันท์
ทองก้อน
17
เด็กหญิง
จุฑามาศ
กัณยาบุตร
18
เด็กหญิง
ณิชนันท์
เผยพร
19
เด็กหญิง
นวี
อยู่นาน
20
เด็กหญิง
นัจนันท์
ไพเชฐศักดิ์
21
เด็กหญิง
นิศารัตน์
จูมอญ
22
เด็กหญิง
นุจรินทร์
ประทาน
23
เด็กหญิง
พรนภา
หมีนิ่ม
24
เด็กหญิง
พฤกษา
เจาะรอด
25
เด็กหญิง
พัชรารัตน์
บัณฑูร
26
เด็กหญิง
พัชรี
นนท์คำวงค์
27
เด็กหญิง
พิชชารีย์
เอบศรี
28
เด็กหญิง
พิมพลอย
สงเคราะห์
29
เด็กหญิง
เพชรรัตน์
นนท์คำวงค์
30
เด็กหญิง
ภิญญดา
เวชประสิทธิ์
31
เด็กหญิง
รัตนาภรณ์
รุ่งโรจน์
32
เด็กหญิง
รุจิลดา
แก้วโสภา
33
เด็กหญิง
วนิสา
เจิมกลิ่น
34
เด็กหญิง
วันดี
มณีนุตร์
35
เด็กหญิง
วารุณี
เวสกุล
36
เด็กหญิง
สาวิตรี
กิ่งจำปา
37
เด็กหญิง
สุนิสา
วะจะนะ
38
เด็กหญิง
สุวนันท์
ธัญญา
39
เด็กหญิง
หทัยทัต
บัวกล้า
40
เด็กหญิง
อฐิติญา
วงษ์เรียน
41
เด็กหญิง
อสมาภรณ์
ใบศรี
42
ลอง ลิ้มชิมรส “ข้าวเปิ๊บ” อาหารพื้นถิ่นเลิศรสโดยมัคคุเทศก์น้อยแห่งนาต้นจั่น
ท่าม กลางความวุ่นวายของสังคมเมือง ในหมู่บ้านเล็กๆ อย่างบ้านนาต้นจั่น ยังคงมีความรื่นรมย์ใจที่พร้อมจะเปิดประตูต้อนรับนักท่องเที่ยวให้เข้ามา ชื่นชมอยู่ทุกฤดูกาล
นำทางโดยมัคคุเทศก์น้อยแห่งนาต้นจั่น เด็กๆ ภูมิใจนำเสนอ หลากหลายสถานที่ และมากมายกิจกรรมในหมู่บ้านของตนเอง
ทั้ง ไปเยี่ยมชมสวนผลไม้ ไปดูกระบวนการทำผ้าหมักโคลนของพี่ป้าน้าอากลุ่มทอผ้าบ้านนาต้นจั่น หรือแม้แต่ไปเรียนรู้ที่บ้านของเล่นจากฝีมือตาวงษ์ พาไปลองลิ้มชิมรส “ข้าวเปิ๊บ” อาหารพื้นถิ่นเลิศรส สิ่งเหล่านี้ ล้วนแล้วแต่เป็นสิ่งที่เด็กๆ พร้อมใจอยากบอกเล่า
ท่อง เที่ยวสุขใจไปกับน้องอาร์ต น้องหม่ำ น้องเต้ รอชมและให้กำลังใจเด็กๆ ว่าจะนำเที่ยวได้น่าติดตามขนาดไหน ในทุ่งแสงตะวัน เสาร์นี้ค่ะ
ที่มา http://www.payai.com/payai/main/main/main.php?mainmenu=program&submenu=spotdetail&pid=1&spotid=539
ขอบ คุณ
www.payai.com
ผู้ว่าราชการจังหวัดสุโขทัย
นายอำเภอศรีสัชนา ลัย
องค์การบริหารส่วนตำบลบ้านตึก
นายสมเกียรติ สุวรรณประสิทธิ์ ผู้อำนวยการโรงเรียนบ้านนาต้นจั่น
สำนักงานเขตพื้นที่สุโขทัยเขต 2
การแพร่ (diffusion) ของโมเลกุลของสารเป็นการเคลื่อนที่ของโมเลกุลจากจุดที่มีความเข้มข้นสูงกว่า ไปยังจุดที่มีความเข้มข้นต่ำกว่า การเคลื่อนที่นี้เป็นไปในลักษณะทุกทิศทุกทาง โดยไม่มีทิศทางที่แน่นอนผลจากการเคลื่อนที่อันนี้จะทำให้ความเข้มข้นของ โมเลกุลของสารในภาชนะที่มีเนื้อที่จำกัดนั้น มีความเข้มข้นเท่ากันหมดตัวอย่างของการแพร่ที่พบได้เสมอ คือ
ก.การแพร่ ของเกลือในน้ำ
ข.การแพร่อขงน้ำหอมในอากาศ
นอกจาก 2 ตัวอย่างทียกมาให้ดูแล้วยังมีตัวอย่างอีกมากมายที่เราพบได้ในชีวิตประจำวัน เช่น การฉีดดีดีทีฆ่าแมลง การเติมน้ำตาลลงในถ้วยกาแฟ การหยดหรือแต่น้ำหอมตามเสื้อผ้า กลิ่นลูกเหม็นกันแมลง ควันจากท่อไอเสียรถยนต์ เป็นต้น
ในปีค.ศ. 1828 (พ.ศ. 2371) รอเบิร์ต บราวน์ ได้สังเกตปรากฏการณ์อย่างหนึ่ง โดยพบว่า เมื่อเกสรดอกไม้ตกลงในน้ำ เกสรนั้นจะมีการเคลื่อนที่อย่างไม่มีทิศทางแน่นอนต่อมาจึงเรียกการเคลื่อน ที่อย่างไม่มีทิศทางแน่นอนหรือ ไร้ทิศทางนี้ ว่า การเคลื่อนที่แบบบราวเนียน (Brownian movement) และแอลเบิร์ต ไอน์สไตน์ (Albert Einstein) ได้ให้เหตุผลว่า การเคลื่อนที่ของเกสรดอกไม้ที่เรียกว่า การเคลื่อนที่แบบบราวเนียนนั้นเกิดจากโมเลกุลของน้ำเคลื่อนที่เข้าชน เกสรดอกไม้อยู่ตลอดเวลา ทำให้เกสรดอกไม้เคลื่อนที่ได้
การแพร่เกิดจาก พลังงานจลน์ (kinetic energy) ของโมเลกุลหรือไอออนของสาร ทำให้เกิดการเคลื่อนที่และกระทบกระทั่งหรือชนกันโดยบังเอิญเป็นผลให้เกิดการ กระจายในทุกทิศทุกทาง บริเวณที่มีความเข้มข้นของโมเลกุลหรือไอออนน้อยกว่า จนทำให้ทุกบริเวณมีความเข้มข้นของโมเลกุลหรือไอออนเท่ากัน จึงเรียกว่า ภาวะสมดุลของการแพร่ (diffusion equilibrium) ในภาวะเช่นนี้สารต่าง ๆ ก็ยังมีการเคลื่อนที่อยู่แต่อยู่ในลักษณะที่ไปและมาหรือออกเข้าในจำนวนที่ เท่า ๆ กัน
ปัจจัยที่มีผลต่อการแพร่
ความเร็วของการแพร่จะมาก หรือน้อย เร็วหรือช้าขึ้นอยู่กับ
1.อุณหภูมิ ในขณะที่อุณหภูมิสูง โมเลกุลของสารมีพลังงานจลน์มากขึ้น ทำให้โมเลกุลเหล่านี้เคลื่อนที่ได้เร็วกว่า เมื่ออุณหภูมิต่ำ การแพร่จึงเกิดขึ้นได้เร็ว
2.ความแตกต่างของความเข้มข้น ถ้าหากมีความเข้มข้นของสาร 2 บริเวณ แตกต่าง แตกต่างกันมากจะทำให้การแพร่เกิดขึ้นได้เร็วขึ้นด้วย เนื่องจากบริเวณที่มีความเข้มข้นมากโมเลกุลมีโอกาสชนและกระแทกกันมากทำให้ โมเลกุลกระจายออกไปยังบริเวณที่มีความเข้มข้นน้อยกว่าได้เร็วกว่า เมื่อความเข้มข้นใกล้เคียงกัน
3.ขนาดของโมเลกุลสาร สารที่มีขนาดโมเลกุลเล็กจะเกิดการแพร่ได้เร็วกว่าสารโมเลกุลใหญ่ เนื่องจากสารโมเลกุลเล็กสามารถแทรกไประหว่างโมเลกุลของสารตัวกลางได้ดีกว่า สารโมเลกุลใหญ่ สารโมเลกุลเล็กจึงแพร่ได้ดี
4.ความเข้มข้นและชนิดของสาร ตัวกลาง สารตัวกลางที่มีความเข้มข้นมากจะมีแรงดึงดูดระหว่างโมเลกุลของตัวกลางของตัว กลาง ทำให้โมเลกุลของสารเคลื่อนที่ไปได้ยาก แต่ถ้าหากสารตัวกลางมีความเข้มข้นน้อยโมเลกุลของสารก็จะเคลื่อนที่ได้ดีทำ ให้การแพร่เกิดขึ้นเร็วด้วย
สารต่าง ๆ สามารถผ่านเข้าออกเยื่อเซลล์ได้ในอัตราเร็วที่แตกต่างกัน น้ำเป็นสารที่ผ่านเยื่อเซลล์ได้ดีที่สุดรองลงมาเป็น ก๊าซที่ละลายน้ำ สารอินทรีย์ สารประจุลบ และสารประจุบวก ซึ่งมีอัตราเร็วในการผ่านเยื่อเซลล์ได้น้อยที่สุด กลไกในการผ่านของสารต่อเยื่อเซลล์นั้นแบ่งออกได้เป็น 3 แบบ คือ
1.การ แพร่ผ่านเยื่อเซลล์ โดยการละลายตัวกับเยื่อเซลล์ เนื่องจากเยื่อเซลล์ประกอบด้วยไขมันเป็นส่วนใหญ่ ดังนั้นสารที่ละลายในไขมันจึงแพร่ผ่านเยื่อเซลล์ได้ดีกว่าสารที่ละลายใน ไขมันไม่ได้
2.การแพร่ผ่านรูของเยื่อเซลล์ เนื่องจากบริเวณรูของเยื่อเซลล์มีสารพวกโปรตีนบุอยู่ ดังนั้นพวกสารโมเลกุลเล็ก ๆ เช่นน้ำ และสารที่ละลายไม่ได้ในไขมันจะผ่านเข้าออกทางนี้ โปรตีนเป็นสารมีประจุบวก ดังนั้นสารที่มีประจุลบจึงสามารถผ่านเข้าออกทางรูนี้ได้ดีกว่าสารประจุบวก
3.การ แพร่ผ่านเยื่อเซลล์โดยการรวมตัวกับตัวพา โดยเชื่อว่าที่เยื่อเซลล์มีสารบางชนิดทำหน้าที่เป็นตัวพา (carrier) ซึ่งจะรวมตัวกับสารและทำให้เกิดการนำสารนั้นเข้าสู่เซลล์ได้เร็วกว่าปกติ การนำกรดอะมิโนและกลูโคสเข้าเซลล์ ซึ่งเกิดขึ้นเร็วกว่าการแพร่แบบธรรมดามาก จึงเรียกการแพร่ของกลูโคสและกรดอะมิโนว่าการแพร่โดยมีตัวช่วย หรือการแพร่แบบฟาซิลิเทต (facilitated diffusion)
ออสโมซิส
เป็น การแพร่ของเหลวผ่านเยื่อบาง ๆ ซึ่งตามปกติจะหมายถึง การแพร่ของน้ำผ่านเยื่อหุ้มเซลล์ (cell membrane) เนื่องจากเยื่อหุ้มเซลล์มีคุณสมบัติในการยอมให้สารบางชนิดเท่านั้นผ่านได้ การแพร่ของน้ำจะแพร่จากบริเวณที่เจือจางกว่า (มีน้ำมาก) ผ่านเยื่อหุ้มเซลล์เข้าสู่บริเวณที่มีความเข้มข้นกว่า (มีน้ำน้อย) ตามปกติการแพร่ของน้ำนี้จะเกิดทั้งสองทิศทาง คือ ทั้งบริเวณเจือจาง และบริเวณเข้มข้น แต่เนื่องจากน้ำบริเวณเจือจางแพร่เข้าสู่บริเวณเข้มข้นมากกว่า จึงมักกล่าวกันสั้น ๆว่า ออสโมซิสเป็นการแพร่ของน้ำจากบริเวณที่มีน้ำมาเข้าไปสู่ในบริเวณที่มีน้ำ น้อยกว่าโดยผ่านเยื่อหุ้มเซลล์
แรงดันออสโมติกเกิดจากการแพร่ของน้ำ จากบริเวณที่มีน้ำมาก (เจือจาง) เข้าสู่บริเวณที่มีน้ำน้อย (เข้มข้น) แรงดันของน้ำนี้จะดันให้ของเหลวขึ้นไปในหลอดได้ ในขณะที่ยังไม่สมดุลของเหลวก็จะขึ้นไปบนหลอดได้เรื่อย ๆ และเมื่อเกิดการสมดุลระดับของของเหลวในหลอดจะคงที่ แรงดันออสโมติกของสารละลายแต่ละชนิดจะแตกต่างกัน น้ำบริสุทธิ์เป็นของเหลวที่มีแรงดันออสโมติกต่ำสุด สารละลายที่เจือจางจะมีแรงดันออสโมติกต่ำส่วนสาระละลายที่เข้มข้นมาจะมีแรง ดันออสโมติกสูงมากด้วย
ในกรณีของเซลล์ ถ้าใส่เซลล์ลงในสารละลายที่มีความเข้มข้นต่างกันจะมีผลต่อเซลล์แตกต่างกัน ด้วยจึงทำให้แบ่งสารละลายที่อยู่นอกเซลล์ออกได้เป็น 3 ชนิด ตามการเปลี่ยนขนาดของเซลล์ เมื่ออยู่ภายในสารละลายนั้น คือ
1.ไฮโพทอนิก โซลูชัน (hypotonic solution) หมายถึง สารละลายนอกเซลล์ที่มีความเข้มข้นน้อยกว่าเซลล์ ดังนั้นเมื่อใส่เซลล์ในสารละลายชนิดนี้จะทำให้เซลล์ขยายขนาดเพิ่มขึ้น เนื่องจากน้ำภายในสารละลายแพร่เข้าสู่เซลล์มากกว่าน้ำภายในเซลล์แพร่ออกนอก เซลล์ในกรณีของเซลล์เม็ดเลือดแดงสารละลายที่เป็นไฮโพทอนิกจะมีความเข้มข้น ต่ำกว่าน้ำเกลือ 0.85 % ซึ่งอาจทำให้เซลล์เม็ดเลือดแดงแตกได้
2.ไอโซทอนิ ก โซลูชัน (isotonic solution) หมายถึง สารละลายนอกเซลล์ที่มีความเข้มข้นเท่ากับเซลล์ ดังนั้นเมื่อใส่เซลล์ในสารละลายชนิดนี้ขนาดของเซลล์จะไม่มีการเปลี่ยนแปลง เนื่องจากน้ำภายในสารละลายและน้ำจากเซลล์แพร่เข้าออกในอัตราที่เท่าเทียมกัน สารละลายที่เป็นไอโซทอนิกกับเซลล์เม็ดเลือดแดง คือ น้ำเกลือ 0.85 %
3.ไฮ เพอร์ทอนิก โซลูชัน (hypertonic solution) หมายถึง สารละลายนอกเซลล์ที่มีความเข้มข้นมากกว่าเซลล์ ดังนั้นเมื่อใส่เซลล์ในสารละลายชนิดนี้จะทำให้เซลล์เหี่ยวลดขนาดลง เรียกว่า เกิดพลาสโมไลซิส (plasmolysis) เนื่องจากน้ำภายในเซลล์แพร่ออกนอกเซลล์มากขึ้น จนถึงจุดอิ่มตัวแล้วจะไม่เพิ่มขึ้น ถึงแม้ว่าจะเพิ่มความแตกต่างของความเข้มข้นให้มากขึ้น ทั้งนี้เนื่องจากโปรตีนที่เป็นตัวพามีอยู่จำกัดและได้ทำนห้าที่ขนส่งสารจน หมดทุกตัวแล้ว การแพร่แบบฟาซิลิเทต นอกจากลำเลียงกลูโคสแล้วยังลำเลียงกรดอะมิโนและคาร์บอนไดออกไซด์ที่อยู่ใน รูปของไฮโดรเจน คาร์บอเนตไอออน (HCO- ) ได้ด้วย
isotonic solution hypertonic solution hypotonic solution
เซลล์พืชมีผนังเซลล์ ดังนั้น เมื่อเซลล์พืชอยู่ในสารละลายไฮโพทอนิก เซลล์พืชจะไม่แตก แต่เซลล์พืชจะเต่งขึ้น เพราะว่าผนังเซลล์พืชมีแรงดันด้านเอาไว้ ซึ่งเรียกว่า wall pressure แต่เมื่อเซลล์พืชอยู่ในสารละลายไฮเพอร์ทอนิก เซลล์พืชจะเสียน้ำให้สารละลายไฮเพอร์ทอนิก ถ้าเสียน้ำออกมาเรื่อย ๆ จะทำให้โพรโทพลาซึมหดตัวลงมาก ทำให้เยื่อหุ้มเซลล์แยกออกจากผนังเซลล์ และหดตัวลง ถ้าหากเสียน้ำมาก ๆ จะทำให้เห็นเยื่อเซลล์และโพรโทพลาซึมเป็นก้อนกลม ๆ อยู่กลางเซลล์
ออสโมซิส ที่เกิดจากสารละลายไฮโพทอนิกนอกเซลล์ ทำให้น้ำผ่านเข้าไปในเซลล์และเซลล์เต่งขึ้น หรือเซลล์แตก เรียกว่า เอนโดสโมซิส (endosmosis) หรือพลาสมอพทิซิส (plasmoptysis) สำหรับออสโมซิสที่เกิดจากสารละลายไฮเพอร์ทอนิก นอกเซลล์แล้ว ให้น้ำผ่านออกนอกเซลล์ ทำให้เซลล์เหี่ยว เรียกว่า เอโซสโมซิส (exosmosis) หรือพลาสโมไลซิส
ที่มาhttp://www.thaiblogonline.com /krusaneh.blog?PostID=3246
เขียนโดย ครูจำเริญ สุวรรณประสิทธิ์ 0 ความคิดเห็น
ก.การแพร่ ของเกลือในน้ำ
ข.การแพร่อขงน้ำหอมในอากาศ
นอกจาก 2 ตัวอย่างทียกมาให้ดูแล้วยังมีตัวอย่างอีกมากมายที่เราพบได้ในชีวิตประจำวัน เช่น การฉีดดีดีทีฆ่าแมลง การเติมน้ำตาลลงในถ้วยกาแฟ การหยดหรือแต่น้ำหอมตามเสื้อผ้า กลิ่นลูกเหม็นกันแมลง ควันจากท่อไอเสียรถยนต์ เป็นต้น
ในปีค.ศ. 1828 (พ.ศ. 2371) รอเบิร์ต บราวน์ ได้สังเกตปรากฏการณ์อย่างหนึ่ง โดยพบว่า เมื่อเกสรดอกไม้ตกลงในน้ำ เกสรนั้นจะมีการเคลื่อนที่อย่างไม่มีทิศทางแน่นอนต่อมาจึงเรียกการเคลื่อน ที่อย่างไม่มีทิศทางแน่นอนหรือ ไร้ทิศทางนี้ ว่า การเคลื่อนที่แบบบราวเนียน (Brownian movement) และแอลเบิร์ต ไอน์สไตน์ (Albert Einstein) ได้ให้เหตุผลว่า การเคลื่อนที่ของเกสรดอกไม้ที่เรียกว่า การเคลื่อนที่แบบบราวเนียนนั้นเกิดจากโมเลกุลของน้ำเคลื่อนที่เข้าชน เกสรดอกไม้อยู่ตลอดเวลา ทำให้เกสรดอกไม้เคลื่อนที่ได้
การแพร่เกิดจาก พลังงานจลน์ (kinetic energy) ของโมเลกุลหรือไอออนของสาร ทำให้เกิดการเคลื่อนที่และกระทบกระทั่งหรือชนกันโดยบังเอิญเป็นผลให้เกิดการ กระจายในทุกทิศทุกทาง บริเวณที่มีความเข้มข้นของโมเลกุลหรือไอออนน้อยกว่า จนทำให้ทุกบริเวณมีความเข้มข้นของโมเลกุลหรือไอออนเท่ากัน จึงเรียกว่า ภาวะสมดุลของการแพร่ (diffusion equilibrium) ในภาวะเช่นนี้สารต่าง ๆ ก็ยังมีการเคลื่อนที่อยู่แต่อยู่ในลักษณะที่ไปและมาหรือออกเข้าในจำนวนที่ เท่า ๆ กัน
ปัจจัยที่มีผลต่อการแพร่
ความเร็วของการแพร่จะมาก หรือน้อย เร็วหรือช้าขึ้นอยู่กับ
1.อุณหภูมิ ในขณะที่อุณหภูมิสูง โมเลกุลของสารมีพลังงานจลน์มากขึ้น ทำให้โมเลกุลเหล่านี้เคลื่อนที่ได้เร็วกว่า เมื่ออุณหภูมิต่ำ การแพร่จึงเกิดขึ้นได้เร็ว
2.ความแตกต่างของความเข้มข้น ถ้าหากมีความเข้มข้นของสาร 2 บริเวณ แตกต่าง แตกต่างกันมากจะทำให้การแพร่เกิดขึ้นได้เร็วขึ้นด้วย เนื่องจากบริเวณที่มีความเข้มข้นมากโมเลกุลมีโอกาสชนและกระแทกกันมากทำให้ โมเลกุลกระจายออกไปยังบริเวณที่มีความเข้มข้นน้อยกว่าได้เร็วกว่า เมื่อความเข้มข้นใกล้เคียงกัน
3.ขนาดของโมเลกุลสาร สารที่มีขนาดโมเลกุลเล็กจะเกิดการแพร่ได้เร็วกว่าสารโมเลกุลใหญ่ เนื่องจากสารโมเลกุลเล็กสามารถแทรกไประหว่างโมเลกุลของสารตัวกลางได้ดีกว่า สารโมเลกุลใหญ่ สารโมเลกุลเล็กจึงแพร่ได้ดี
4.ความเข้มข้นและชนิดของสาร ตัวกลาง สารตัวกลางที่มีความเข้มข้นมากจะมีแรงดึงดูดระหว่างโมเลกุลของตัวกลางของตัว กลาง ทำให้โมเลกุลของสารเคลื่อนที่ไปได้ยาก แต่ถ้าหากสารตัวกลางมีความเข้มข้นน้อยโมเลกุลของสารก็จะเคลื่อนที่ได้ดีทำ ให้การแพร่เกิดขึ้นเร็วด้วย
สารต่าง ๆ สามารถผ่านเข้าออกเยื่อเซลล์ได้ในอัตราเร็วที่แตกต่างกัน น้ำเป็นสารที่ผ่านเยื่อเซลล์ได้ดีที่สุดรองลงมาเป็น ก๊าซที่ละลายน้ำ สารอินทรีย์ สารประจุลบ และสารประจุบวก ซึ่งมีอัตราเร็วในการผ่านเยื่อเซลล์ได้น้อยที่สุด กลไกในการผ่านของสารต่อเยื่อเซลล์นั้นแบ่งออกได้เป็น 3 แบบ คือ
1.การ แพร่ผ่านเยื่อเซลล์ โดยการละลายตัวกับเยื่อเซลล์ เนื่องจากเยื่อเซลล์ประกอบด้วยไขมันเป็นส่วนใหญ่ ดังนั้นสารที่ละลายในไขมันจึงแพร่ผ่านเยื่อเซลล์ได้ดีกว่าสารที่ละลายใน ไขมันไม่ได้
2.การแพร่ผ่านรูของเยื่อเซลล์ เนื่องจากบริเวณรูของเยื่อเซลล์มีสารพวกโปรตีนบุอยู่ ดังนั้นพวกสารโมเลกุลเล็ก ๆ เช่นน้ำ และสารที่ละลายไม่ได้ในไขมันจะผ่านเข้าออกทางนี้ โปรตีนเป็นสารมีประจุบวก ดังนั้นสารที่มีประจุลบจึงสามารถผ่านเข้าออกทางรูนี้ได้ดีกว่าสารประจุบวก
3.การ แพร่ผ่านเยื่อเซลล์โดยการรวมตัวกับตัวพา โดยเชื่อว่าที่เยื่อเซลล์มีสารบางชนิดทำหน้าที่เป็นตัวพา (carrier) ซึ่งจะรวมตัวกับสารและทำให้เกิดการนำสารนั้นเข้าสู่เซลล์ได้เร็วกว่าปกติ การนำกรดอะมิโนและกลูโคสเข้าเซลล์ ซึ่งเกิดขึ้นเร็วกว่าการแพร่แบบธรรมดามาก จึงเรียกการแพร่ของกลูโคสและกรดอะมิโนว่าการแพร่โดยมีตัวช่วย หรือการแพร่แบบฟาซิลิเทต (facilitated diffusion)
ออสโมซิส
เป็น การแพร่ของเหลวผ่านเยื่อบาง ๆ ซึ่งตามปกติจะหมายถึง การแพร่ของน้ำผ่านเยื่อหุ้มเซลล์ (cell membrane) เนื่องจากเยื่อหุ้มเซลล์มีคุณสมบัติในการยอมให้สารบางชนิดเท่านั้นผ่านได้ การแพร่ของน้ำจะแพร่จากบริเวณที่เจือจางกว่า (มีน้ำมาก) ผ่านเยื่อหุ้มเซลล์เข้าสู่บริเวณที่มีความเข้มข้นกว่า (มีน้ำน้อย) ตามปกติการแพร่ของน้ำนี้จะเกิดทั้งสองทิศทาง คือ ทั้งบริเวณเจือจาง และบริเวณเข้มข้น แต่เนื่องจากน้ำบริเวณเจือจางแพร่เข้าสู่บริเวณเข้มข้นมากกว่า จึงมักกล่าวกันสั้น ๆว่า ออสโมซิสเป็นการแพร่ของน้ำจากบริเวณที่มีน้ำมาเข้าไปสู่ในบริเวณที่มีน้ำ น้อยกว่าโดยผ่านเยื่อหุ้มเซลล์
แรงดันออสโมติกเกิดจากการแพร่ของน้ำ จากบริเวณที่มีน้ำมาก (เจือจาง) เข้าสู่บริเวณที่มีน้ำน้อย (เข้มข้น) แรงดันของน้ำนี้จะดันให้ของเหลวขึ้นไปในหลอดได้ ในขณะที่ยังไม่สมดุลของเหลวก็จะขึ้นไปบนหลอดได้เรื่อย ๆ และเมื่อเกิดการสมดุลระดับของของเหลวในหลอดจะคงที่ แรงดันออสโมติกของสารละลายแต่ละชนิดจะแตกต่างกัน น้ำบริสุทธิ์เป็นของเหลวที่มีแรงดันออสโมติกต่ำสุด สารละลายที่เจือจางจะมีแรงดันออสโมติกต่ำส่วนสาระละลายที่เข้มข้นมาจะมีแรง ดันออสโมติกสูงมากด้วย
ในกรณีของเซลล์ ถ้าใส่เซลล์ลงในสารละลายที่มีความเข้มข้นต่างกันจะมีผลต่อเซลล์แตกต่างกัน ด้วยจึงทำให้แบ่งสารละลายที่อยู่นอกเซลล์ออกได้เป็น 3 ชนิด ตามการเปลี่ยนขนาดของเซลล์ เมื่ออยู่ภายในสารละลายนั้น คือ
1.ไฮโพทอนิก โซลูชัน (hypotonic solution) หมายถึง สารละลายนอกเซลล์ที่มีความเข้มข้นน้อยกว่าเซลล์ ดังนั้นเมื่อใส่เซลล์ในสารละลายชนิดนี้จะทำให้เซลล์ขยายขนาดเพิ่มขึ้น เนื่องจากน้ำภายในสารละลายแพร่เข้าสู่เซลล์มากกว่าน้ำภายในเซลล์แพร่ออกนอก เซลล์ในกรณีของเซลล์เม็ดเลือดแดงสารละลายที่เป็นไฮโพทอนิกจะมีความเข้มข้น ต่ำกว่าน้ำเกลือ 0.85 % ซึ่งอาจทำให้เซลล์เม็ดเลือดแดงแตกได้
2.ไอโซทอนิ ก โซลูชัน (isotonic solution) หมายถึง สารละลายนอกเซลล์ที่มีความเข้มข้นเท่ากับเซลล์ ดังนั้นเมื่อใส่เซลล์ในสารละลายชนิดนี้ขนาดของเซลล์จะไม่มีการเปลี่ยนแปลง เนื่องจากน้ำภายในสารละลายและน้ำจากเซลล์แพร่เข้าออกในอัตราที่เท่าเทียมกัน สารละลายที่เป็นไอโซทอนิกกับเซลล์เม็ดเลือดแดง คือ น้ำเกลือ 0.85 %
3.ไฮ เพอร์ทอนิก โซลูชัน (hypertonic solution) หมายถึง สารละลายนอกเซลล์ที่มีความเข้มข้นมากกว่าเซลล์ ดังนั้นเมื่อใส่เซลล์ในสารละลายชนิดนี้จะทำให้เซลล์เหี่ยวลดขนาดลง เรียกว่า เกิดพลาสโมไลซิส (plasmolysis) เนื่องจากน้ำภายในเซลล์แพร่ออกนอกเซลล์มากขึ้น จนถึงจุดอิ่มตัวแล้วจะไม่เพิ่มขึ้น ถึงแม้ว่าจะเพิ่มความแตกต่างของความเข้มข้นให้มากขึ้น ทั้งนี้เนื่องจากโปรตีนที่เป็นตัวพามีอยู่จำกัดและได้ทำนห้าที่ขนส่งสารจน หมดทุกตัวแล้ว การแพร่แบบฟาซิลิเทต นอกจากลำเลียงกลูโคสแล้วยังลำเลียงกรดอะมิโนและคาร์บอนไดออกไซด์ที่อยู่ใน รูปของไฮโดรเจน คาร์บอเนตไอออน (HCO- ) ได้ด้วย
isotonic solution hypertonic solution hypotonic solution
เซลล์พืชมีผนังเซลล์ ดังนั้น เมื่อเซลล์พืชอยู่ในสารละลายไฮโพทอนิก เซลล์พืชจะไม่แตก แต่เซลล์พืชจะเต่งขึ้น เพราะว่าผนังเซลล์พืชมีแรงดันด้านเอาไว้ ซึ่งเรียกว่า wall pressure แต่เมื่อเซลล์พืชอยู่ในสารละลายไฮเพอร์ทอนิก เซลล์พืชจะเสียน้ำให้สารละลายไฮเพอร์ทอนิก ถ้าเสียน้ำออกมาเรื่อย ๆ จะทำให้โพรโทพลาซึมหดตัวลงมาก ทำให้เยื่อหุ้มเซลล์แยกออกจากผนังเซลล์ และหดตัวลง ถ้าหากเสียน้ำมาก ๆ จะทำให้เห็นเยื่อเซลล์และโพรโทพลาซึมเป็นก้อนกลม ๆ อยู่กลางเซลล์
ออสโมซิส ที่เกิดจากสารละลายไฮโพทอนิกนอกเซลล์ ทำให้น้ำผ่านเข้าไปในเซลล์และเซลล์เต่งขึ้น หรือเซลล์แตก เรียกว่า เอนโดสโมซิส (endosmosis) หรือพลาสมอพทิซิส (plasmoptysis) สำหรับออสโมซิสที่เกิดจากสารละลายไฮเพอร์ทอนิก นอกเซลล์แล้ว ให้น้ำผ่านออกนอกเซลล์ ทำให้เซลล์เหี่ยว เรียกว่า เอโซสโมซิส (exosmosis) หรือพลาสโมไลซิส
ที่มาhttp://www.thaiblogonline.com /krusaneh.blog?PostID=3246
1.สิ่งมีชีวิตขนาดเล็กที่ไม่สามารถมองเห็นได้ด้วยตาเปล่า แต่เดิมใช้แว่นขยายหรือเลนส์อันเดียวส่องดู คงเช่นเดียวกับการใช้เเว่นขยายส่องดูลายมือ ในระยะต่อมา ได้สร้างแว่นขยาย ส่องดูสิ่งมีชีวิต ขนาดเล็กๆ ในราวปี พ.ศ.2153 นักวิทยาศาสตร์ผู้นี้คือข้อใด
ก. Galilei Galileo
ข. Zaccharias Janssen
ค. Robert Hooke
ง. Antony Van Leeuwenhoek
2.พ.ศ.2208 นักวิทยาศาสตร์ผู้นี้คือข้อใด ได้ประดิษฐ์กล้องจุลทรรศน์ ชนิดเลนส์ประกอบ ที่มีลำกล้อง รูปร่างสวยงาม ป้องกันแสงภายนอกรบกวนได้ และไม่ต้องถือเลนส์ ให้ซ้อนกัน เขาตรวจดูสิ่งต่างๆ เช่น ไม้คอร์กที่ฝานบางๆ ด้วยมีดโกน
ก. Galilei Galileo
ข. Robert Hooke
ค. Zaccharias Janssen
ง. Antony Van Leeuwenhoek
3. ตรวจดูสิ่งต่างๆ เช่น ไม้คอร์กที่ฝานบางๆ ด้วยมีดโกน พบว่า ไม้คอร์กประกอบด้วย ช่องเล็กๆ มากมาย เขาเรียกช่องเล็กๆ เหล่านั้นว่า "cell" นักวิทยาศาสตร์ผู้นี้คือข้อใด
ก. Galilei Galileo
ข. Zaccharias Janssen
ค. Antony Van Leeuwenhoek
ง. Robert Hooke
4.พ.ศ.2215 ชาวฮอลันดา ได้สร้างกล้องจุลทรรศน์ ชนิดเลนส์เดี่ยว จากแว่นขยายที่เขาฝนเอง ซึ่งสามารถขยายได้ถึง 270 เท่า เขาใช้กล้องจุลทรรศน์ ตรวจดูหยดน้ำ จากบึง และแม่น้ำ และจากน้ำฝน ที่รองเก็บไว้ในหม้อ เห็นสิ่งมีชีวิต ชนิดเล็กๆ มากมาย ทำให้ได้ชื่อว่าเป็นคนพบ จุลินทรีย์เป็นคนแรกนักวิทยาศาสตร์ผู้นี้คือข้ก. Robert Hooke
ข. Zaccharias Janssen
ค. Antony Van Leeuwenhoek
ง. Galilei Galileo
5.พ.ศ.2376 นักพฤกษศาสตร์ชาวอังกฤษ เป็นคนแรกที่ค้นพบว่า ในเซลล์พืช มีนิวเคลียส (nucleus) เป็นก้อนกลมๆ อยู่ภายในเซลล์
ก. Robert Brown
ข. Zaccharias Janssen
ค. Antony Van Leeuwenhoek
ง. Galilei Galileo
เขียนโดย ครูจำเริญ สุวรรณประสิทธิ์ 0 ความคิดเห็น
ก. Galilei Galileo
ข. Zaccharias Janssen
ค. Robert Hooke
ง. Antony Van Leeuwenhoek
2.พ.ศ.2208 นักวิทยาศาสตร์ผู้นี้คือข้อใด ได้ประดิษฐ์กล้องจุลทรรศน์ ชนิดเลนส์ประกอบ ที่มีลำกล้อง รูปร่างสวยงาม ป้องกันแสงภายนอกรบกวนได้ และไม่ต้องถือเลนส์ ให้ซ้อนกัน เขาตรวจดูสิ่งต่างๆ เช่น ไม้คอร์กที่ฝานบางๆ ด้วยมีดโกน
ก. Galilei Galileo
ข. Robert Hooke
ค. Zaccharias Janssen
ง. Antony Van Leeuwenhoek
3. ตรวจดูสิ่งต่างๆ เช่น ไม้คอร์กที่ฝานบางๆ ด้วยมีดโกน พบว่า ไม้คอร์กประกอบด้วย ช่องเล็กๆ มากมาย เขาเรียกช่องเล็กๆ เหล่านั้นว่า "cell" นักวิทยาศาสตร์ผู้นี้คือข้อใด
ก. Galilei Galileo
ข. Zaccharias Janssen
ค. Antony Van Leeuwenhoek
ง. Robert Hooke
4.พ.ศ.2215 ชาวฮอลันดา ได้สร้างกล้องจุลทรรศน์ ชนิดเลนส์เดี่ยว จากแว่นขยายที่เขาฝนเอง ซึ่งสามารถขยายได้ถึง 270 เท่า เขาใช้กล้องจุลทรรศน์ ตรวจดูหยดน้ำ จากบึง และแม่น้ำ และจากน้ำฝน ที่รองเก็บไว้ในหม้อ เห็นสิ่งมีชีวิต ชนิดเล็กๆ มากมาย ทำให้ได้ชื่อว่าเป็นคนพบ จุลินทรีย์เป็นคนแรกนักวิทยาศาสตร์ผู้นี้คือข้ก. Robert Hooke
ข. Zaccharias Janssen
ค. Antony Van Leeuwenhoek
ง. Galilei Galileo
5.พ.ศ.2376 นักพฤกษศาสตร์ชาวอังกฤษ เป็นคนแรกที่ค้นพบว่า ในเซลล์พืช มีนิวเคลียส (nucleus) เป็นก้อนกลมๆ อยู่ภายในเซลล์
ก. Robert Brown
ข. Zaccharias Janssen
ค. Antony Van Leeuwenhoek
ง. Galilei Galileo
ที่ มา http://teqsmart.org/shop/index.php?main_page=product_info&cPath=3&products_id=33 เขียนโดย ครูจำเริญ สุวรรณประสิทธิ์ 0 ความคิดเห็น
การ สังเคราะห์ด้วยแสง
การ สังเคราะห์ด้วยแสง (อังกฤษ: photosynthesis) เป็นกระบวนการทางชีวเคมีที่สำคัญอย่างหนึ่ง ซึ่งทำให้พืช,สาหร่าย และแบคทีเรียบางชนิดได้รับพลังงานจากแสงอาทิตย์มาปรุงอาหารได้ จะว่าไปแล้ว สิ่งมีชีวิตแทบทั้งหมดล้วนอาศัยพลังงานที่ ได้จากกระบวนการสังเคราะห์ด้วยแสงเพื่อความเติบโตของตน ทั้งทางตรงและทางอ้อม นับเป็นความสำคัญยิ่งยวดสำหรับสิ่งมีชีวิตในโลก นอกจากนี้ยังก่อให้เกิดการผลิตออกซิเจน ซึ่งมีเป็นองค์ประกอบในสัดส่วนที่มากของบรรยากาศโลกด้วย สิ่งมีชีวิตที่สร้างพลังงานจากกระบวนการสังเคราะห์แสงได้ เรียกว่า "phototrophs"
ความเข้มของแสง
ถ้ามีความเข้มของแสงมาก อัตราการสังเคราะห์ด้วยแสงจะเพิ่มขึ้นเรื่อยๆ ดังกราฟ อุณหภูมิกับความเข้มของแสง มีผลต่ออัตราการสังเคราะห์ด้วยแสงร่วมกัน คือ ถ้าอุณหภูมิสูงขึ้นเพียงอย่างเดียว แต่ความเข้มของแสงน้อยจะไม่ทำให้อัตราการสังเคราะห์ด้วยแสงเพิ่มขึ้น อัตราการสังเคราะห์ด้วยแสงจะเพิ่มขึ้นเรื่อยๆ จนถึงขีดหนึ่งแล้วอัตราการสังเคราะห์ด้วยแสงจะลดต่ำลงตามอุณหภูมิและความ เข้มของแสงที่เพิ่มขึ้นและยังขึ้นอยู่กับชนิดของพืชอีกด้วยเช่น พืช c3และ พืช c4
โดยปกติ ถ้าไม่คิดถึงปัจจัยอื่นๆ เข้ามาเกี่ยวข้องด้วย อัตราการสังเคราะห์ด้วยแสงของพืชส่วนใหญ่จะเพิ่มมากขึ้น เมื่ออุณหภูมิสูงขึ้นในช่วง 0-35 °C หรือ 0-40 °C ถ้าอุณหภูมิสูงกว่านี้ อัตราการสังเคราะห์ด้วยแสงจะลดลง ทั้งนี้เนื่องจากกระบวนการสังเคราะห์ด้วยแสงเป็นปฏิกิริยาที่มีเอนไซม์ควบ คุม และการทำงานของเอนไซม์ขึ้นอยู่กับอุณหภูมิ ดังนั้น เรื่องของอุณหภูมิจึงมีความสัมพันธ์กับอัตราการสังเคราะห์ด้วยแสง เรียกปฏิกิริยาเคมีที่มีความสัมพันธ์กับอุณหภูมิว่า ปฏิกิริยาเทอร์โมเคมิคัล
ถ้าความเข้มของแสงวีดีน้อยมาก จนทำให้การสังเคราะห์ด้วยแสงของพืชเกิดขึ้นน้อยกว่ากระบวนการหายใจ น้ำตาลถูกใช้หมดไป พืชจะไม่สามารถมีชีวิตอยู่ได้ อัตราการสังเคราะห์ด้วยแสงของพืชไม่ได้ ขึ้นอยู่กับความเข้มของแสงเท่านั้น แต่ยังขึ้นอยู่กับความยาวคลื่น (คุณภาพ) ของแสง และช่วงเวลาที่ได้รับ เช่น ถ้าพืชได้รับแสงนานจะมีกระบวนการสังเคราะห์ด้วยแสงดีขึ้น แต่ถ้าพืชได้แสงที่มีความเข้มมากๆ ในเวลานานเกินไป จะทำให้กระบวนการสังเคราะห์ด้วยแสงชะงัก หรือหยุดลงได้ทั้งนี้เพราะคลอโรฟิลล์ถูกกระตุ้นมากเกินไป ออกซิเจนที่เกิดขึ้นแทนที่จะออกสู่บรรยากาศภายนอก พืชกลับนำไปออกซิไดส์ส่วนประกอบและสารอาหารต่างๆภายในเซลล์ รวมทั้งคลอฟิลล์ทำให้สีของคลอโรฟิลล์จางลง ประสิทธิภาพของคลอโรฟิลล์และเอนไซม์เสื่อมลง ทำให้การสร้างน้ำตาลลดลง
ความ เข้มข้นของคาร์บอนไดออกไซด์
ถ้าความเข้มข้นของคาร์บอนไดออกไซด์ (CO2) เพิ่มขึ้นจากระดับปกติที่มีในอากาศ อัตราการสังเคราะห์ด้วยแสงจะเพิ่มสูงขึ้นตามไปด้วย จนถึงระดับหนึ่งถึงแม้ว่าความเข้มข้นของคาร์บอนไดออกไซด์จะสูงขึ้น แต่อัตราการสังเคราะห์ด้วยแสงไม่ได้สูงขึ้นตามไปด้วย และถ้าหากว่าพืชได้รับคาร์บอนไดออกไซด์ ที่มีความเข้มข้นสูงกว่าระดับน้ำแล้วเป็นเวลานานๆ จะมีผลทำให้อัตราการสังเคราะห์ด้วยแสงลดต่ำลงได้ ดังกราฟ
คาร์บอน ไดออกไซด์จะมีผลต่ออัตราการสังเคราะห์ด้วยแสงมากน้อยแค่ไหนขึ้น อยู่กับปัจจัยอื่นด้วย เช่น ความเข้มข้นสูงขึ้น แต่ความเข้มของแสงน้อย และอุณหภูมิของอากาศก็ต่ำ กรณีเช่นนี้ อัตราการสังเคราะห์ด้วยแสงจะลดต่ำลงตามไปด้วย ในทางตรงกันข้าม ถ้าคาร์บอนไดออกไซด์มีความเข้มข้นสูงขึ้น ความเข้มของแสงและอุณหภูมิของอากาศก็เพิ่มขึ้น กรณีเช่นนี้อัตราการสังเคราะห์ด้วยแสงก็จะสูงขึ้นตามไปด้วย
นัก ชีววิทยาจึงมักเลี้ยงพืชบางชนิดไว้ในเรือนกระจกที่แสงผ่านเข้าได้มากๆ แล้วให้ คาร์บอนไดออกไซด์มากขึ้นเป็นพิเศษ ซึ่งมีผลทำให้พืชมีกระบวนการสังเคราะห์ด้วยแสงเพิ่มมากขึ้น อาหารเกิดมากขึ้น จึงเจริญเติบโตอย่างรวดเร็ว ออกดอกออกผลเร็ว และออกดอกออกผลนอกฤดูกาลก็ได้
[แก้] อุณหภูมิ
อุณหภูมิ เป็นปัจจัยอย่างหนึ่งที่มีอิทธิพลต่อการสังเคราะห์ด้วยแสงของพืช โดยทั่วไปอัตราการสังเคราะห์ด้วยแสงจะเพิ่มขึ้นเรื่อยๆ เมื่ออุณหภูมิสูงขึ้น 10-35 °C ถ้าอุณหภูมิสูงขึ้นกว่านี้อัตราการสังเคราะห์ด้วยแสงวีดีจะลดต่ำลงตาม อุณหภูมิที่เพิ่มขึ้น อัตราการสังเคราะห์ด้วยแสงที่อุณหภูมิสูงๆ ยังขึ้นอยู่กับเวลาอีกปัจจัยหนึ่งด้วย กล่าวคือ ถ้าอุณหภูมิสูงคงที่ เช่น ที่ 40 °C อัตราการสังเคราะห์ด้วยแสงจะลดลงตามระยะเวลาที่เพิ่มขึ้น ทั้งนี้เพราะเอนไซม์ทำงานได้ดีในช่วงอุณหภูมิที่พอเหมาะ ถ้าสูงเกิน 40 °C เอนไซม์จะเสื่อมสภาพทำให้การทำงานของเอนไซม์ชะงักลง ดังนั้นอุณหภูมิจึงมีความสัมพันธ์ต่อการสังเคราะห์แสงด้วย เรียกปฏิกิริยาเคมีที่มีความสัมพันธ์กับอุณหภูมิว่า ปฏิกิริยาเทอร์มอเคมิคอล (Thermochemical reaction)
[แก้] ออกซิเจน
ตาม ปกติในอากาศจะมีปริมาณของออกซิเจน (O2) ประมาณ 25% ซึ่งมักคงที่อยู่แล้ว จึงไม่ค่อยมีผลต่อการสังเคราะห์ด้วยแสง แต่ถ้าปริมาณออกซิเจนลดลงจะมีผลทำให้อัตราการสังเคราะห์ด้วยแสงสูงขึ้น แต่ถ้ามีมากเกินไปจะทำให้เกิดปฏิกิริยาออกซิเดชัน ของสารต่างๆ ภายในเซลล์ โดยเป็นผลจากพลังงานแสง (Photorespiration) รุนแรงขึ้น การสังเคราะห์ด้วยแสงจึงลดลง
[แก้] น้ำ
น้ำ ถือเป็นวัตถุดิบที่จำเป็นต่อกระบวนการสังเคราะห์ด้วยแสง (แต่ต้องการประมาณ 1% เท่านั้น จึงไม่สำคัญมากนักเพราะพืชมีน้ำอยู่ภายในเซลล์อย่างเพียงพอ) อิทธิพลของน้ำมีผลต่อกระบวนการสังเคราะห์ด้วยแสงทางอ้อม คือ ช่วยกระตุ้นการทำงานของเอนไซม์
[แก้] เกลือแร่
ธาตุแมกนีเซียม (Mg) , และไนโตรเจน (N) ของเกลือใน ดิน มีความสำคัญต่ออัตราการสังเคราะห์ด้วยแสง เพราะธาตุดังกล่าวเป็นองค์ประกอบอยู่ในโมเลกุลของคลอโรฟิลล์ ดังนั้น ถ้าในดินขาดธาตุทั้งสอง พืชก็จะขาดคลอโรฟิลล์ ทำให้การสังเคราะห์ด้วยแสงลดลงด้วย นอกจากนี้ยังพบว่าเหล็ก (Fe) จำเป็นต่อการสร้างคลอโรฟิลล์ และโปรตีนไซโตโครม (ตัวรับและถ่ายทอดอิเล็กตรอน) ถ้าไม่มีธาตุเหล็กในดินเพียงพอ การสังเคราะห์คลอโรฟิลล์ก็จะเกิดขึ้นไม่ได้และ ฟอสฟอรัสอีกด้วย
[แก้] อายุของใบ
ใบจะต้องไม่แก่หรืออ่อนจนเกินไป ทั้งนี้เพราะในใบอ่อนคลอโรฟิลล์ยังเจริญไม่เต็มที่ ส่วนใบที่แก่มากๆ คลอโรฟิลล์จะสลายตัวไปเป็นจำนวนมาก
[แก้] สมการเคมีในการสังเคราะห์ด้วยแสง
สรุปสมการเคมีในการสังเคราะห์ด้วย แสงของพืชสีเขียวเป็นดังนี้ :
nCO2 + 2nH2O + พลังงานแสง → (CH2O)n + nO2 + nH2O
น้ำตาลเฮกโซส และ แป้ง เป็นผลผลิตขั้นต้นดังสมการดังต่อไปนี้:
6CO2 + 12H2O + พลังงานแสง → C6H12O6 + 6O2 + 6H2O
การสังเคราะห์ด้วยแสงแบ่งเป็น 2 ปฏิกิริยาคือ
* ปฏิกิริยาที่ต้องใช้แสง คือปฏิกิริยาโฟโตฟอสโฟรีเลชั่น
* ปฏิกิริยาการตรึงคาร์บอน เป็นขั้นตอนที่มีการสังเคราะห์น้ำตาลกลูโคส โดยใช้คาร์บอนจากคาร์บอนไดออกไซด์ และใช้พลังงานจาก ATP และ NADPH + H+ ในสภาวะที่ไม่มีแสงเมื่อปฏิกิริยาฟอสโฟรีเลชั่นหยุด ปฏิกิริยาการตรึงคาร์บอนจะหยุดไปด้วย
ที่มา http://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B1%E0%B8%87%E0%B9%80%E0%B8%84%E0%B8%A3%E0%B8%B2%E0%B8%B0%E0%B8%AB%E0%B9%8C%E0%B8%94%E0%B9%89%E0%B8%A7%E0%B8%A2%E0%B9%81%E0%B8%AA%E0%B8%87
การ เปรียบเทียบโครงสร้างของ เซลล์พืช และ เซลล์สัตว์
ที่ มาhttp://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%8B%E0%B8%A5%E0%B8%A5%E0%B9%8C_(%E0%B8%8A%E0%B8%B5%E0%B8%A7%E0%B8%A7%E0%B8%B4%E0%B8%97%E0%B8%A2%E0%B8%B2)
การเปรียบเทียบโครงสร้างของ เซลล์พืช และ เซลล์สัตว์ เซลล์สัตว์ เซลล์พืช
ออร์แก เนลล์ (Organelles) นิวเคลียส (Nucleus)
นิวคลีโอลัส (Nucleolus in nucleus)
เอนโดพลาสมิกเรติคูลัม (Endoplasmic reticulum)
เอนโดพลา สมิกเรติคูลัมแบบผิวขรุขระ (Rough endoplasmic reticulum)
เอนโดพลาสมิ กเรติคูลัมแบบผิวเรียบ (Smooth endoplasmic reticulum)
ไรโบโซม (Ribosome)
ไซโทสเกเลตอน (Cytoskeleton)
กอลจิแอปพาราตัส (Golgi apparatus)
ไซโทพลาซึม (Cytoplasm)
ไมโทคอนเดรีย (Mitochondria)
เวสิ เคิล (Vesicle)
แวคิวโอล (Vacuole)
ไลโซโซม (Lysosome)
เซนทริโอล (Centriole)
นิวเคลียส (Nucleus)
นิวคลีโอลัสในนิวเคลียส (Nucleolus in nucleus)
เอนโดพลาสมิกเรติคูลัม (Endoplasmic reticulum)
เอน โดพลาสมิกเรติคูลัมแบบผิวขรุขระ (Rough endoplasmic reticulum)
เอนโดพลา สมิกเรติคูลัมแบบผิวเรียบ (Smooth endoplasmic reticulum)
ไรโบโซม (Ribosomes)
ไซโทสเกเลตอน (Cytoskeleton)
กอลจิแอปพาราตัส หรือ ดิกไทโอโซม (dictiosomes)
ไซโทพลาซึม (Cytoplasm)
ไมโทคอนเดรีย (Mitochondria)
เวสิเคิล (Vesicle)
คลอโรพลาสต์ (Chloroplast) และ พลาสติด (plastid)
แวคิวโอล (Central vacuole)
โทโนพลาสต์ (Tonoplast-central vacuole membrane)
เปอรอกซิโซม (Peroxisome)
ไกล ออกซิโซม (Glyoxysome)
ซิเลีย (Cilium)
แฟลเจลลัม (Flagellum)
พลาสมา เมมเบรน (Plasma membrane)
พลาสมา เมมเบรน (Plasma membrane)
ผนัง เซลล์ (Cell wall)
พลาสโมเดสมาตา (Plasmodesmata)
แฟลเจลลัมในเซลล์ สืบพันธุ์ (Flagellum in gametes)
เขียนโดย ครูจำเริญ สุวรรณประสิทธิ์ 0 ความคิดเห็น
ออร์แก เนลล์ (Organelles) นิวเคลียส (Nucleus)
นิวคลีโอลัส (Nucleolus in nucleus)
เอนโดพลาสมิกเรติคูลัม (Endoplasmic reticulum)
เอนโดพลา สมิกเรติคูลัมแบบผิวขรุขระ (Rough endoplasmic reticulum)
เอนโดพลาสมิ กเรติคูลัมแบบผิวเรียบ (Smooth endoplasmic reticulum)
ไรโบโซม (Ribosome)
ไซโทสเกเลตอน (Cytoskeleton)
กอลจิแอปพาราตัส (Golgi apparatus)
ไซโทพลาซึม (Cytoplasm)
ไมโทคอนเดรีย (Mitochondria)
เวสิ เคิล (Vesicle)
แวคิวโอล (Vacuole)
ไลโซโซม (Lysosome)
เซนทริโอล (Centriole)
นิวเคลียส (Nucleus)
นิวคลีโอลัสในนิวเคลียส (Nucleolus in nucleus)
เอนโดพลาสมิกเรติคูลัม (Endoplasmic reticulum)
เอน โดพลาสมิกเรติคูลัมแบบผิวขรุขระ (Rough endoplasmic reticulum)
เอนโดพลา สมิกเรติคูลัมแบบผิวเรียบ (Smooth endoplasmic reticulum)
ไรโบโซม (Ribosomes)
ไซโทสเกเลตอน (Cytoskeleton)
กอลจิแอปพาราตัส หรือ ดิกไทโอโซม (dictiosomes)
ไซโทพลาซึม (Cytoplasm)
ไมโทคอนเดรีย (Mitochondria)
เวสิเคิล (Vesicle)
คลอโรพลาสต์ (Chloroplast) และ พลาสติด (plastid)
แวคิวโอล (Central vacuole)
โทโนพลาสต์ (Tonoplast-central vacuole membrane)
เปอรอกซิโซม (Peroxisome)
ไกล ออกซิโซม (Glyoxysome)
ซิเลีย (Cilium)
แฟลเจลลัม (Flagellum)
พลาสมา เมมเบรน (Plasma membrane)
พลาสมา เมมเบรน (Plasma membrane)
ผนัง เซลล์ (Cell wall)
พลาสโมเดสมาตา (Plasmodesmata)
แฟลเจลลัมในเซลล์ สืบพันธุ์ (Flagellum in gametes)
การใช้กล้องจุลทรรศน์การใช้กล้องจุลทรรศน์แบบใช้แสง ( Light microscope)
1.วางกล้อง ให้ฐานอยู่บนพื้นรองรับที่เรียบสม่ำเสมอเพื่อให้ลำกล้องตั้งตรง
2.หมุน เลนส์ใกล้วัตถุ ( objective lens )อันที่มีกำลังขยายต่ำสุดมาอยู่ตรงกับลำกล้อง
3.ปรับกระจกเงาใต้แท่นวาง วัตถุให้แสงเข้าลำกล้องเต็มที่
4. นำสไลด์ที่จะศึกษาวางบนแท่นของวัตถุ ให้วัตถุอยู่กึ่งกลางบริเวณที่แสงผ่านแล้วค่อยๆ หมุนปุ่มปรับภาพหยาบ(coarse adjustment knob)ให้ลำกล้องเลื่อนลงมาอยู่ใกล้วัตถุมากที่สุด โดยระวังงอย่าให้เลนส์ใกล้วัตถถุสัมผัสกับกระจกปิดสไลด์
5.มองผ่านเลนส์ ใกล้ตา (eyepiece)ลงตามลำกล้อง พร้อมกับหมุนปุ่มปรับภาพหยาบขึ้นช้าๆ จนมองเห็นวัตถุที่จะศึกษา แล้วจึงเปลี่ยนมาหมุนปรับปุ่มภาพละเอียด(fine adjustment knob)เพื่อปรับภาพให้ชัด อาเลื่อนสไลด์ไป มาช้าๆ เพื่อให้สิ่งที่ต้องการศึกษามาอยู่กลางแนวลำกล้อง ขณะปรับภาพ ถ้าเป็นกล้องสมัยก่อนลำกล้องจะเคลื่อนที่ขึ้นและลงเข้าหาวัตถุ แต่ถ้าเป็นกล้องสมัยใหม่แท่นวางวัตถุจะทำหน้าที่เลื่อนขึ้นลงเข้าหาเลนส์ วัตถุ
6.ถ้าต้องการขยายภาพให้ใหญ่ขึ้น ให้หมุนเลนส์ใกล้วัตถุอันที่มีกำลังขยายสูงขึ้นเขข้ามาในแนวลำกล้อง และไม่ควรขยับสไลด์อีก แล้วหมุนปรับภาพละเอียดเพื่อให้เห็นภาพชัดเจนยิ่งขึ้น
7.การปรับแสงที่ เข้าในลำกล้องให้มากหรือน้อย ให้หมุนแผ่นไดอะแฟรม (diaphram) ปรับแสงตามต้องการกล้องจุลทรรศน ์ ที่ใช้กันในโรงเรียนจะมีจำนวนเลนส์ใกล้วัตถุต่างๆ กันไปเช่น 1 อัน 2 อัน หรือ 3 อัน และมีกำลังขยายต่างๆกันไป อาจเป็น กำลังขยายต่ำสุด x4 กำลังขยายขนาดกลาง x10 กำลังขยายขนาดสู’งx40, x80 หรือที่กำลังขยายสูงมากๆ ถึงx100 ส่วนกำลังขยาย ของเลนส์นั้นโดยทั่วไปจะเป็นx10 แต่ก็มีบางกล้องที่เป็นx5 หรือx15 กำลังขยายของกล้องจุลทรรศน์คำนวณได้จาก ผลคูณของกำลังขยายขอองเลนส์ใกล้วัตถุกับกำลังขยายของเลนส์ใกล้ตา ซึ่งมีกำกับไว้ที่เลนส์
การระวังรักษากล้องจุลทรรศน์
เนื่องจากกล้อ องจุลทรรศน์เป็นอุปกรณืที่มีราคาสูงและมีส่ววนประกอบที่อาจเสียหายง่าย โดยเฉพาะเลนส์ จึงต้องใช้และเก็บรักษาด้วยความระมัดระวังให้ถูกวิธี ซึ่งมีวิธีปฏิบัติดังนี้
1.การยกกล้อง ควรใช้มือหนึ่งจับที่แขนกล้อง (arm) และอีกมือหนึ่งวางที่ฐาน(base) และต้องให้ลำกล้องตั้งตรงเสมอ เพื่อป้องกันการเลื่อนหลุดของเลนส์ใกล้ตา ซึ่งสามารถถอดออกได้ง่าย
2.สไลด์ และกระจกปิดสไลด์ต้องไม่เปียก เพราะอาจทำให้แท่นวางเกิดสนิม และทำให้เลนส์ใกล้วัตถุชื้นอาจเกิดราที่เลนส์ได้
3. ขณะที่ตามองผ่านเลนส์ใกล้ตา เมื่อจะต้องหมุนปุ่มปรับภาพหยาบ ต้องหมุนขึ้นเท่านั้น ห้ามหมุนลง เพราะเลนส์ใกล้ตาอาจกระทบกระจกสไลด์ทำให้เลนส์แตกได้
4.การหาภาพต้อง เริ่มต้นด้วยเลนส์วัตถุกำลังขยายต่ำสุดก่อนเสมอ เพราะปรับหาภาพสะดวกที่สุด
5.เมื่อ ใช้เลนส์ใกล้วัตถุที่มีกำลังขยายสูง ถ้าจะปรับภาพให้ชัดให้หมุนเฉพาะปุ่มปรับภาพละเอียดเท่านั้น
6.ห้ามใช้มือ แตะเลนส์ ในการทำความสะอาดให้ใช้กระดาษสำหรับเช็ดเลนส์เท่านั้น
7.เมื่อ ใช้เสร็จแล้วต้องเอาวัตถุที่ศึกษาออก เช็ดแท่นวางวัตถุและเช็ดเลนส์ให้สะอาด
เขียนโดย ครูจำเริญ สุวรรณประสิทธิ์ 1 ความคิดเห็น
1.วางกล้อง ให้ฐานอยู่บนพื้นรองรับที่เรียบสม่ำเสมอเพื่อให้ลำกล้องตั้งตรง
2.หมุน เลนส์ใกล้วัตถุ ( objective lens )อันที่มีกำลังขยายต่ำสุดมาอยู่ตรงกับลำกล้อง
3.ปรับกระจกเงาใต้แท่นวาง วัตถุให้แสงเข้าลำกล้องเต็มที่
4. นำสไลด์ที่จะศึกษาวางบนแท่นของวัตถุ ให้วัตถุอยู่กึ่งกลางบริเวณที่แสงผ่านแล้วค่อยๆ หมุนปุ่มปรับภาพหยาบ(coarse adjustment knob)ให้ลำกล้องเลื่อนลงมาอยู่ใกล้วัตถุมากที่สุด โดยระวังงอย่าให้เลนส์ใกล้วัตถถุสัมผัสกับกระจกปิดสไลด์
5.มองผ่านเลนส์ ใกล้ตา (eyepiece)ลงตามลำกล้อง พร้อมกับหมุนปุ่มปรับภาพหยาบขึ้นช้าๆ จนมองเห็นวัตถุที่จะศึกษา แล้วจึงเปลี่ยนมาหมุนปรับปุ่มภาพละเอียด(fine adjustment knob)เพื่อปรับภาพให้ชัด อาเลื่อนสไลด์ไป มาช้าๆ เพื่อให้สิ่งที่ต้องการศึกษามาอยู่กลางแนวลำกล้อง ขณะปรับภาพ ถ้าเป็นกล้องสมัยก่อนลำกล้องจะเคลื่อนที่ขึ้นและลงเข้าหาวัตถุ แต่ถ้าเป็นกล้องสมัยใหม่แท่นวางวัตถุจะทำหน้าที่เลื่อนขึ้นลงเข้าหาเลนส์ วัตถุ
6.ถ้าต้องการขยายภาพให้ใหญ่ขึ้น ให้หมุนเลนส์ใกล้วัตถุอันที่มีกำลังขยายสูงขึ้นเขข้ามาในแนวลำกล้อง และไม่ควรขยับสไลด์อีก แล้วหมุนปรับภาพละเอียดเพื่อให้เห็นภาพชัดเจนยิ่งขึ้น
7.การปรับแสงที่ เข้าในลำกล้องให้มากหรือน้อย ให้หมุนแผ่นไดอะแฟรม (diaphram) ปรับแสงตามต้องการกล้องจุลทรรศน ์ ที่ใช้กันในโรงเรียนจะมีจำนวนเลนส์ใกล้วัตถุต่างๆ กันไปเช่น 1 อัน 2 อัน หรือ 3 อัน และมีกำลังขยายต่างๆกันไป อาจเป็น กำลังขยายต่ำสุด x4 กำลังขยายขนาดกลาง x10 กำลังขยายขนาดสู’งx40, x80 หรือที่กำลังขยายสูงมากๆ ถึงx100 ส่วนกำลังขยาย ของเลนส์นั้นโดยทั่วไปจะเป็นx10 แต่ก็มีบางกล้องที่เป็นx5 หรือx15 กำลังขยายของกล้องจุลทรรศน์คำนวณได้จาก ผลคูณของกำลังขยายขอองเลนส์ใกล้วัตถุกับกำลังขยายของเลนส์ใกล้ตา ซึ่งมีกำกับไว้ที่เลนส์
การระวังรักษากล้องจุลทรรศน์
เนื่องจากกล้อ องจุลทรรศน์เป็นอุปกรณืที่มีราคาสูงและมีส่ววนประกอบที่อาจเสียหายง่าย โดยเฉพาะเลนส์ จึงต้องใช้และเก็บรักษาด้วยความระมัดระวังให้ถูกวิธี ซึ่งมีวิธีปฏิบัติดังนี้
1.การยกกล้อง ควรใช้มือหนึ่งจับที่แขนกล้อง (arm) และอีกมือหนึ่งวางที่ฐาน(base) และต้องให้ลำกล้องตั้งตรงเสมอ เพื่อป้องกันการเลื่อนหลุดของเลนส์ใกล้ตา ซึ่งสามารถถอดออกได้ง่าย
2.สไลด์ และกระจกปิดสไลด์ต้องไม่เปียก เพราะอาจทำให้แท่นวางเกิดสนิม และทำให้เลนส์ใกล้วัตถุชื้นอาจเกิดราที่เลนส์ได้
3. ขณะที่ตามองผ่านเลนส์ใกล้ตา เมื่อจะต้องหมุนปุ่มปรับภาพหยาบ ต้องหมุนขึ้นเท่านั้น ห้ามหมุนลง เพราะเลนส์ใกล้ตาอาจกระทบกระจกสไลด์ทำให้เลนส์แตกได้
4.การหาภาพต้อง เริ่มต้นด้วยเลนส์วัตถุกำลังขยายต่ำสุดก่อนเสมอ เพราะปรับหาภาพสะดวกที่สุด
5.เมื่อ ใช้เลนส์ใกล้วัตถุที่มีกำลังขยายสูง ถ้าจะปรับภาพให้ชัดให้หมุนเฉพาะปุ่มปรับภาพละเอียดเท่านั้น
6.ห้ามใช้มือ แตะเลนส์ ในการทำความสะอาดให้ใช้กระดาษสำหรับเช็ดเลนส์เท่านั้น
7.เมื่อ ใช้เสร็จแล้วต้องเอาวัตถุที่ศึกษาออก เช็ดแท่นวางวัตถุและเช็ดเลนส์ให้สะอาด
โครง สร้างเซลล์:นิวเคลียส:ไซโทพลาซึม:ส่วนที่ห่อหุ้มเซลล์
เซลล์ โดยทั่วไปถึงแม้จะมีขนาด รูปร่าง และหน้าที่แตกต่างกัน แต่ลักษณะพื้นฐานภายในเซลล์มักไม่แตกต่างกัน นักชีววิทยาได้ใช้กล้องจุลทรรศน์อิเล็กตรอนศึกษาเซลล์ของสิ่งมีชีวิตพบว่า ในไซโทพลาซึมมีโครงสร้างขนาดเล็กที่ทำหน้าที่เฉพาะเรียกว่า ออร์แกเนลล์ (organelle) มีหลายขนาด รูปร่าง จำนวน และหน้าที่ต่างกัน ทั้งนี้ขึ้นอยู่กับชนิดของเซลล์ซึ่งจะประกอบด้วยโครงสร้างพื้นฐานที่คล้าย คลึงกัน ดังนี้
โครงสร้างของเซลล์เมื่อศึกษาด้วยกล้องจุลทรรศน์ อิเล็กตรอน
1. นิวเคลียส (nucleus)
เป็นโครงสร้างที่มักพบอยู่กลางเซลล์เมื่อย้อมสีจะติดสีเข้มทึบ มีลักษณะเป็นก้อนทึบแสงเด่นชัดอยู่บริเวณกลางๆ เซลล์โดยทั่วๆ ไปจะมี 1 นิวเคลียส เซลล์พารามีเซียม มี 2 นิวเคลียส นิวเคลียสมีความสำคัญเนื่องจากเป็นที่อยู่ของสารพันธุกรรม จึงมีหน้าที่ควบคุมการทำงานของเซลล์ โดยทำงานร่วมกับไซโทพลาซึม
โครง สร้างของนิวเคลียสและเยื่อหุ้มนิวเคลียส
สารประกอบทางเคมีของนิวเคลียส ประกอบด้วย
1. ดีออกซีไรโบนิวคลีอิก (deoxyribonucleic acid) หรือ DNA เป็นส่วนประกอบของโครโมโซมนิวเคลียส
2. ไรโบนิวคลีอิก แอซิด (ribonucleic acid) หรือ RNA เป็นส่วนที่พบในนิวเคลียสโดยเป็นส่วนประกอบของนิวคลีโอลัส
3. โปรตีน ที่สำคัญคือโปรตีนฮีสโตน (histone) โปรตีนโพรตามีน (protamine) ทำหน้าที่เชื่อมเกาะอยู่กับ DNA ส่วนโปรตีนเอนไซม์ส่วนใหญ่จะเป็นเอนไซม์ในกระบวนการสังเคราะห์กรดนิวคลีอิก และเมแทบอลิซึมของกรดนิวคลีอิก
โครงสร้างของนิวเคลียส ประกอบด้วย 3 ส่วน คือ
1. เยื่อหุ้มนิวเคลียส (nuclear membrane) เป็นเยื่อบางๆ 2 ชั้น เรียงซ้อนกัน ที่เยื่อนี้จะมีรู เรียกว่านิวเคลียร์ พอร์ (nuclear pore) หรือ แอนนูลัส (annulus) มากมาย ทำหน้าที่เป็นทางผ่านของสารต่างๆ ระหว่างไซโทพลาซึมและนิวเคลียส นอกจากนี้เยื่อหุ้มนิวเคลียสยังมีลักษณะเป็นเยื่อเลือกผ่านเช่นเดียวกับ เยื่อหุ้มเซลล์
2. โครมาทิน (chromatin) เป็นส่วนของนิวเคลียสที่ย้อมติดสี เป็นเส้นใยเล็กๆ พันกันเป็นร่างแห ประกอบด้วย โปรตีนหลายชนิด และ DNA มีหน้าที่ควบคุมกิจกรรมต่างๆ ของเซลล์และควบคุมการถ่ายทอดลักษณะทางพันธุกรรมของสิ่งมีชีวิตทั่วไป
3. นิวคลีโอลัส (nucleolus) เป็นส่วนของนิวเคลียสที่มีลักษณะเป็นก้อนอนุภาคหนาทึบ ประกอบด้วย โปรตีน และ RNA โดยโปรตีนเป็นชนิดฟอสโฟโปรตีน (phosphoprotein) และไม่พบโปรตีนฮีสโตนเลย นิวคลีโอลัสมีหน้าที่ในการสังเคราะห์ RNA ชนิดต่างๆ ดังนั้นนิวคลีโอลัสจึงมีความสำคัญต่อการสร้างโปรตีนเป็นอย่างมาก เนื่องจากไรโบโซมทำหน้าที่สร้างโปรตีน
2. ไซโทพลาซึม (cytoplasm)
เป็นส่วนที่ล้อมรอบนิวเคลียสอยู่ภายในเยื่อหุ้มเซลล์ โดยทั่วไปจะแบ่งออกเป็น 2 ชั้น คือ
1. เอกโทพลาซึม (ectoplasm) เป็นส่วนของไซโทพลาซึมที่อยู่ด้านนอกติดกับเยื่อหุ้มเซลล์ มีลักษณะบางใส เพราะมีส่วนประกอบต่างๆ ของเซลล์อยู่น้อย
2. เอนโดพลาซึม (endoplasm) เป็นชั้นของไซโทพลาซึมที่อยู่ด้านในใกล้นิวเคลียส ชั้นนี้จะมีลักษณะที่เข้มข้นกว่าเนื่องจากมี ออร์แกเนลล์ (organelle) และอนุภาคต่างๆ ของสารอยู่มาก จึงเป็นบริเวณที่เกิดปฏิกิริยาเคมีต่างๆ ของเซลล์มากด้วย
ไซโทพลาซึม นอกจากแบ่งออกเป็น 2 ชั้น แล้วยังมีส่วนประกอบที่สำคัญ 2 ส่วนคือ
ก. ออร์แกเนลล์ (organelle) เป็นส่วนที่มีชีวิต ทำหน้าที่คล้ายๆ กับเป็นอวัยวะของเซลล์
ออร์แกเนลล์ที่มีเยื่อหุ้ม (membrane bounded organelle)
1. ไมโทคอนเดรีย (mitochondria) ส่วนใหญ่จะมีรูปร่างกลม ท่อนสั้น ท่อนยาว หรือกลมรีคล้ายรูปไข่ ประกอบด้วยสารโปรตีน ประมาณร้อยละ 60-65 และลิพิดประมาณร้อยละ 35-40 ภายในไมโทคอนเดรียมีของเหลวซึ่งประกอบด้วยสารหลายชนิดเรียกว่า มาทริกซ์ (matrix) มีเอนไซม์ที่สำคัญในการสร้างพลังงานจากการหายใจ นอกจากนี้ยังพบเอนไซม์ในการสังเคราะห์ DNA สังเคราะห์ RNA และโปรตีนด้วย หน้าที่ของไมโทคอนเดรียคือ เป็นแหล่งสร้างพลังงานของเซลล์โดยการหายใจ
2. เอนโดพลาสมิก เรติคูลัม (endoplasmic reticulum:ER) เอนโดพลาสมิก เรติคูลัมเป็นออร์แกเนลล์ที่มีเมมเบรนห่อหุ้ม
เอนโดพลาสมิกเรติคูลัม
ประกอบ ด้วยโครงสร้างระบบท่อที่มีการเชื่อมประสานกันทั้งเซลล์ แบ่งออกเป็น 2 ชนิดคือ
2.1 เอนโดพลาสมิก เรติคูลัมชนิดขรุขระ (rough endoplasmic reticulum:RER) เป็นชนิดที่มีไรโบโซม มีหน้าที่สำคัญคือ การสังเคราะห์โปรตีนของไรโบโซมที่เกาะอยู่ และลำเลียงสารซึ่งได้แก่โปรตีนที่สร้างได้ และสารอื่นๆ
2.2 เอนโดพลาสมิก เรติคูลัมชนิดเรียบ (smooth endoplasmic reticulum:SER) เป็นชนิดที่ไม่มีไรโบโซม มีหน้าที่สำคัญคือ ลำเลียงสารต่างๆ เช่น RNA ลิพิดโปรตีนสังเคราะห์สารพวกไขมันและสเตอรอยด์ฮอร์โมน
3. กอลจิ บอดี (Golgi body) มีรูปร่างลักษณะเป็นถุงแบนๆ หรือเป็นท่อเรียงซ้อนกันเป็นชั้นๆ มีหน้าที่สำคัญคือ เก็บสะสมสารที่เซลล์สร้างขึ้นก่อนที่จะปล่อยออกนอกเซลล์ ซึ่งสารส่วนใหญ่เป็นสารโปรตีน นอกจากนี้ยังเกี่ยวข้องกับการสร้างนีมาโทซีส (nematocyst) ของไฮดราอีกด้วย
กอลจิบอดี
4. ไลโซโซม (lysosome) เป็นออร์แกเนลล์ที่มีเมมเบรนห่อหุ้มเพียงชั้นเดียว รูปร่างกลมรี พบเฉพาะในเซลล์สัตว์เท่านั้น มีหน้าที่ที่สำคัญคือ
4.1 ย่อยสลายอนุภาคและโมเลกุลของสารอาหารภายในเซลล์
4.2 ย่อยหรือทำลายเชื้อโรคและสิ่งแปลกปลอมต่างๆ ที่เข้าสู่ร่างกายหรือเซลล์
4.3 ทำลายเซลล์ที่ตายแล้ว
4.4 ย่อยสลายโครงสร้างต่างๆ ของเซลล์ในระยะที่เซลล์มีการเปลี่ยนแปลง
5. แวคิวโอล (vacuole) แวคิวโอลเป็นออร์แกเนลล์ที่มีลักษณะเป็นถุง โดยทั่วไปจะพบในเซลล์พืชและสัตว์ชั้นต่ำ แบ่งเป็น 3 ชนิดคือ
5.1 ลิวโคพลาสต์ (leucoplast) เป็นพลาสติดที่ไม่มีสี
5.2 โครโมพลาสต์ (chromoplast) เป็นพลาสติดที่มีรงควัตถุสีอื่นๆ นอกจากสีเขียว
5.4 คลอโรพลาสต์ (chloroplast) เป็นพลาสติดที่มีสีเขียว ซึ่งส่วนใหญ่เป็นสารคลอโรฟีลล์ ภายในคลอโรพลาสต์ประกอบด้วยส่วนที่เป็นของเหลวเรียกว่า สโตรมา (stroma) มีเอนไซม์ที่เกี่ยวข้องกับการสังเคราะห์ด้วยแสง มี DNA,RNA และไรโบโซม และเอนไซม์อีกหลายชนิดปะปนกันอยู่
ออร์แกเนลล์ที่ไม่มีเยื่อหุ้ม (nonmembrane bounded organelle)
1. ไรโบโซม (ribosome) เป็นออร์แกเนลล์ขนาดเล็ก พบได้ในสิ่งมีชีวิตทั่วไป ประกอบด้วยสารเคมี 2 ชนิด คือ กรดไรโบนิวคลีอิก (ribonucleic acid:RNA) กับโปรตีน มีทั้งที่อยู่เป็นอิสระในไซโทพลาซึม และเกาะอยู่บนเอนโดพลาสมิกเรติคูลัม พวกที่เกาะอยู่ที่เอนโดพลาสมิกเรติคูลัมจะบฃพบมากในเซลล์ต่อมที่สร้าง เอนไซม์ต่างๆ พลาสมาเซลล์เหล่านี้จะสร้างโปรตีนที่นำไปใช้นอกเซลล์เป็นสำคัญ
2. เซนทริโอล (centriole) มีลักษณะคล้ายท่อทรงกระบอก 2 อันตั้งฉากกัน พบเฉพาะในสัตว์และโพรทิสต์บางชนิด มีหน้าที่เกี่ยวกับการแบ่งเซลล์ เซนทริโอลแต่ละอันจะประกอบด้วยชุดของไมโครทูบูล (microtubule) ซึ่งเป็นหลอดเล็กๆ มีหน้าที่เกี่ยวข้องกับการลำเลียงสารในเซลล์ ให้ความแข็งแรงแก่เซลล์และโครงสร้างอื่นๆ เกี่ยวข้องกับการแบ่งเซลล์ การเคลื่อนที่ของเซลล์
ข. ไซโทพลาสมิก อินคลูชัน (cytoplasmic inclusion) หมายถึง สารที่ไม่มีชีวิตที่อยู่ในไซโทพลาสมิก เช่น เม็ดแป้ง (starch grain) เม็ดโปรตีน หรือพวกของเสียที่เกิดจากกระบวนการแมแทบอลิซึม
3. ส่วนที่ห่อหุ้มเซลล์
หมายถึง โครงสร้างที่ห่อหุ้มไซโทพลาซึมของเซลล์ให้คงรูปร่างและแสดงขอบเขตของเซลล์ ได้แก่
1. เยื่อหุ้มเซลล์ (cell membrane)
เยื่อหุ้มเซลล์มีชื่อเรียกได้หลายอย่าง เช่น พลาสมา เมมเบรน (plasma membrane) ไซโทพลาสมิก เมมเบรน (cytoplasmic membrane) เยื่อหุ้มเซลล์มีความหนาประมาณ 75 อังสตรอม ประกอบด้วยโปรตีนประมาณร้อยละ 60 ลิพิดประมาณร้อยละ 40 การเรียงตัวของโปรตีนและลิพิดจัดเรียงตัวเป็นสารประกอบเชิงซ้อน การเรียงตัวในลักษณะเช่นนี้เรียกว่า ยูนิต เมมเบรน (unit membrane)
โครง สร้างเยื่อหุ้มเซลล์
เยื่อหุ้มเซลล์มีหน้าที่หลายประการคือ
1. ห่อหุ้มส่วนของโพรโทพลาซึมที่อยู่ข้างในทำให้เซลล์แต่ละเซลล์แยกออกจากัน
2. ช่วยควบคุมการเข้าออกของสารต่างๆ ระหว่างภายในเซลล์และสิ่งแวดล้อม มีคุณสมบัติเป็นเซมิเพอร์มีเอเบิล เมมเบรน (semipermeable membrane) ซึ่งจะยินยอมให้สารบางชนิดเท่านั้นที่ผ่านเข้าออกได้ ซึ่งการผ่านเข้าออกจะมีอัตราเร็วที่แตกต่างกัน
3. ความต่างศักย์ทางไฟฟ้า (electrical potential) ของภายในและภายนอกเซลล์เนื่องมาจากการกระจายของไอออนและโปรตีนไม่เท่ากัน ซึ่งมีความสำคัญในการนำสารพวกไอออนเข้าหรือออกจากเซลล์ ซึ่งมีความจำเป็นต่อการทำงานของเซลล์ประสาทและเซลล์กล้ามเนื้อมาก
4. เยื่อหุ้มเซลล์ทำหน้าที่รับสัมผัสสาร ทำให้เกิดการเร่งหรือลดการเกิดปฏิกิริยาเคมีภายในเซลล์นั้นๆ
2. ผนังเซลล์ (cell wall)
ผนังเซลล์ พบได้ในสิ่งมีชีวิตหลากชนิด เช่น เซลล์พืช สาหร่าย แบคทีเรีย และรา ผนังเซลล์ทำหน้าที่ป้องกันและให้ความแข็งแรงแก่เซลล์ โดยที่ผนังเซลล์เป็นส่วนที่ไม่มีชีวิตของเซลล์
ผนังเซลล์พืช
ผนังเซลล์พืช ประกอบด้วยชั้นต่างๆ 3 ชั้น คือ
1. ผนังเชื่อมยึดระหว่างเซลล์ (middle lamella) เป็นชั้นที่เกิดขึ้นเมื่อเซลล์พืชแบ่งตัวและเป็นชั้นที่เชื่อมระหว่างเซลล์ ให้อยู่ติดกัน
2. ผนังเซลล์ปฐมภูมิ (primary wall) เป็นชั้นที่เกิดขึ้นเมื่อเซลล์เริ่มเจริญเติบโต ประกอบด้วยสารพวก เซลลูโลส เป็นส่วนใหญ่
3. ผนังเซลล์ทุติยภูมิ (secondary wall) เป็นชั้นที่เกิดขึ้นเมื่อเซลล์หยุดขยายขนาดแล้ว โดยมีสารพวก เซลลูโลส คิวทิน ซูเบอริน ลิกนิน และเพกทินมาเกาะ
ที่มาhttp://school.obec.go.th/saneh/cell/cell/main1.htm
Theodor_Schwann
Matthias_Schleiden
ประวัติเซลล์
เซลล์และทฤษฎีเซลล์
ร่างกายของคนเราดำรงชีวิตอยู่ได้ด้วยการทำงานของระบบต่าง ๆ และอวัยวะดังกล่าวเกิดจากเนื้อเยื่อ (tissue) ที่ประกอบด้วยหน่วยย่อยเล็ก ๆ ลงไปอีกหน่วยย่อยนี้เรียกว่า เซลล์ จึงกล่าวได้ว่า เซลล์เป็นหน่วยโครงสร้างพื้นฐานของสิ่งมีชีวิตที่เล็กที่สุด
เซลล์ส่วนใหญ่มีขนาดเล็กมาก ไม่สามารถสังเกตได้ด้วยตาเปล่า การศึกษาเกี่ยวกับเซลล์จึงต้องอาศัยกล้องจุลทรรศน์ ถ้ากล้องจุลทรรศน์นั้นมีกำลังขยายสูงก็จะพบรายละเอียดของสิ่งที่เราต้องการ สังเกตมากขึ้น เซลล์สิ่งมีชีวิตมีรูปร่างและโครงสร้างภายในที่แตกต่างเมื่อประมาณ พ.ศ.2381 มัตทิอัส ชไลเดน (Matthias Schleiden)
นักพฤกษศาสตร์ชาวเยอรมันได้ค้น พบว่า พืชทั้งหลายต่างเป็นสิ่งมีชีวิตทีมี
หลายเซลล์ และในปีถัดมา พ.ศ.2382 เทโอดอร์ ชวันน์ (Theodor Schwann)
นักสัตววิทยาชาวเยอรมัน ได้ประกาศว่าสัตว์ทั้งหลายต่างก็มีเซลล์เป็นองค์ประกอบ นักวิทยาศาสตร์ทั้ง 2 คน จึงได้ร่วมกันตั้ง ทฤษฎีเซลล์ (Cell theory) มีใจความว่าสิ่งมีชีวิตทั้งหลายประกอบด้วยเซลล์ และเซลล์นั้นคือหน่วยพื้นฐานของสิ่งมีชีวิต
ทุกชนิด
ที่มา http://www.thaigoodview.com/library/contest2551/science04/25/2/miracle_cell/pictures/sci_Theodor_Schwann.jpg/pictures/sci_Theodor_Schwann.jpg
เขียนโดย ครูจำเริญ สุวรรณประสิทธิ์ 0 ความคิดเห็น